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a b s t r a c t 

In video-based tracking and recognition applications, shadows are usually mis-classified as 

foreground or part of it due to its close associative to the objects. Shadows in indoor sce- 

narios are more challenging and usually characterized by multiple light sources that pro- 

duce complex patterns. In this article, we present a learning-based method for removing 

shadows. Our method suppresses light shadows with a dynamically computed threshold 

and removes dark shadows using an online learning strategy that is fine-tuned with the 

automatically identified examples in the new videos. Our experiments demonstrate that 

the proposed method adapts to the videos and remove shadows effectively. The average ac- 

curacy exceeds 97%. The sensitivity of shadow detection varies slightly with different con- 

fidence levels used in example selection for retraining and high confidence usually yields 

better performance with less retraining iterations. In the evaluation of efficiency, updating 

kNN imposes little impact on the processing time. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Background subtraction is a critical step in many computer vision applications ranging from object tracking to action

recognition [1,2] , which requires accurate foreground objects. However, the foreground object is usually distorted by non-

stationary shadows of the moving object. Due to its nature of dynamically emerging with objects, the shadow is usually

misclassified as foreground object or part of it. There have been many methods developed to handle shadow removal in a

variety of outdoor scenarios, e.g., traffic monitoring [3] and surveillance [4] . However, these methods are facing difficulties

in indoor lighting, where multiple light sources combine to produce complex shadows. Research has been conducted for

indoor scenarios [5] , in which a manually specified threshold is used. 

Shadows in indoor scenarios are usually characterized by multiple light sources. An example is shown in Fig. 1 (a), which

shows that part of the shadow appears brighter than the others. Without removing the shadow, the foreground object

tends to be erroneously segmented, as shown in Fig. 1 (b); and with shadow removal, the optimal body silhouette contains

no shadow component, as shown in Fig. 1 (c). The inconsistent hue and intensity of shadows make automatic removal a

challenging task; simple color-based methods are ineffective and could cause the shattered object of interest [5] . 
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Fig. 1. Complex shadow and the background subtraction results. (a) a frame showing complex shadow of different shades. (b) background subtraction 

result. (c) background subtraction with shadow removal. 

Fig. 2. An example of shadows in an indoor scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this article, we present a learning-based shadow removal method to suppress shadows in indoor videos that contain

complex shadows. Our method categorizes shadows into light shadows and dark shadows based on the color changes with

respect to the background model. In dealing with light shadows, chroma of a pixel has little changes but its intensity is

slightly reduced. Hence, a threshold is dynamically determined by searching for pixels of the same color but darker in

intensity in contrast to the background model. For dark shadows, an online transfer learning-based method is proposed to

identify the unwanted regions. A base classifier is initially trained with manually annotated examples and refined with the

automatically identified examples in the new videos on-the-fly to adapt to the video under process and to classifier dark

shadow pixels. 

The rest of this paper is organized as follows: Section 2 presents the related work of shadow removal in videos and, in

particular, methods to handle indoor scenarios. Section 3 describes our proposed method in detail. Section 4 discusses the

experimental results using several indoor videos. A comparison study is conducted to demonstrate the improvements in our

method. Section 5 concludes this paper with a summary and future work. 

2. Related work 

Shadow removal is a challenging problem in both still images [6] and videos [7] . Although methods that deal with still

image can be applied to video frames, their performance degrades and the computational complexity is usually too high for

practical applications [8] . To remove shadows from videos, various color models have been explored to characterize their

dynamic changes. Cucchiara et al. [9] proposed an HSV color space model for shadow removal from videos. The idea is that

shadow changes the hue and the saturation components in a certain range while reduces the brightness. The thresholds

are derived from the average image luminance and gradient. Gallego and Pardas [10] implemented a Bayesian method us-

ing brightness and color distortion model for shadow removal. Amato et al. [11] developed a method that employs local

color constancy. The values of the background image are divided by the values of the current frame in the RGB space. The

method assumes that in the luminance ratio space, a low gradient constancy is present in all shadowed regions due to

local color constancy. A chroma difference model in RGB space was also developed in [12] . A 3D cone-shaped illumination

model was proposed in [13] for background subtraction with shadow removal in indoor surveillance. The work explores the

challenges of illumination changes in indoor environments. Gomes et al. [14] integrated color and gradient information with

image segmentation using a cascade classifiers. Chromatic and texture features of the foreground objects and their shad-

ows were extracted and classified and a stochastic majority voting scheme was used to detect the shadow regions. Huerta

et al. [15] leveraged temporal similarity between textures and spatial similarities between color angle and brightness distor-
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Fig. 3. Pixel distribution in the color difference space. The frames used to create the plots are from one video. (a) is the distribution of light shadow 

pixels. (b) is the distribution of dark shadow pixels. (c) is the distribution of background pixels. (d) is the distribution of foreground object pixels. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tions in a tracking-based approach that recovers missed shadow pixels. A combination of motion filters in a data association

framework was proposed, which exploits the temporal consistency between objects and shadows to increase the shadow

detection rate. Nghiem et al. [5] employ chromaticity consistency, texture consistency and range of shadow intensity to

remove shadows. However, the sensitivity and efficiency are in question [16] . 

Homogeneity and texture are also employed in shadow detection and removal. Asaril et al. [17] developed a shadow re-

moval method based on the homogeneity property of the shadow. Thresholding and boundary removal are used for remov-

ing shadows followed by a validation step that checks the percentage of area that has been removed. Bian et al. [3] imple-

mented a method that uses texture autocorrelation to extract the shadow of a vehicle. Later statistical discrimination is used

to analyze the extracted portions. Error correction is performed using integer wavelength transform. Lu et al. [18] proposed

a shadow removal method based on the direction of shadows using patch-based comparison on geometrical properties. The

algorithm assumes that the shadow will start at the edge of the object. This is true if the whole object is visible from the

camera, otherwise, the chance of a disjoint shadow arises. Disjoint shadows are shadows which are not connected spatially

to the body. 

Learning-based approaches have been developed to model and remove shadows. Wang et al. [19] proposed a dynamic

conditional random field model for shadow segmentation in indoor video scenes that uses intensity and gradient features.

Temporal and spatial dependencies are unified by the conditional random field. An approximate filtering algorithm is de-

rived to recursively estimate the segmentation field from the observed images. Martel-Brisson and Zaccarin [20] proposed

a Gaussian Mixture Model learning algorithm for detecting shadows. Physical properties of light sources and surfaces are

employed in order to identify a direction in RGB space at which background surface values under cast shadows are found.
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Fig. 4. Exemplar frames from our testing videos. (a)–(f) correspond to the videos listed in Table 1 . 
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Fig. 5. Exemplar results. (a) are the original video frames. (b) are the background subtraction results using ViBe. (c) are the shadow removed results using 

our method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, the method is affected by the training phase and the computational complexity results in a long learning time.

Joshi and Papanikolopoulos [21] proposed a dynamically adapting algorithm that applies co-training to create a classifier

with a small number of manually labeled data. Semi-supervised learning helps in adapting to new environments. Inten-

sity, color, and edge features are used to train a support vector machine for shadow removal. Qin et al. [22] employed a

clustering method to remove shadows. However, complex indoor lighting conditions have not been discussed at length. 

3. Shadow removal using dynamic thresholding and transfer learning 

Depending on the position of the imaging device, the shadow appears in different shapes, which is complicated when

multiple light sources are present. Fig. 2 illustrates an exemplary frame of an indoor human tracking scenario. The original

frame is shown in Fig. 2 (a) and the segmented result is shown in Fig. 2 (b). In the resulting image, we separate the shadows

into two kinds: light shadow and dark shadow. In this figure, the human silhouette is depicted in white, the dark shadow

is in green, and the light shadow is in blue. Light shadow usually occurs when the human subject is at a distance to

the background wall or there exist other light sources that brighten part of the shadow. The dark shadow, on the other

hand, occurs with total (or near total) obstruction of light. The great variation in the shadow intensity makes it difficult to

differentiate background from foreground object. 

Since light shadows alter the background by slightly dimming its brightness, the hue of the affected pixels has no change,

whereas the intensity value decreases slightly, which is proportional to the lighting conditions [4] . Dark shadows, however,

greatly alter the background color, which impacts the hue, intensity, and saturation of the affected pixel. We can model the

dark shadow in a similar way as the light shadow by setting the lower bound in brightness and hue, yet this could include

the color range of true foreground object in dark colors. An example of Pixel distributions in color difference space is shown

in Fig. 3 . The plots show the distributions of a collection of pixels from several frames, and there are significant overlaps in
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this color and intensity difference space among shadows, background, and foreground object. It is clear that color or color

difference is an unreliable feature to differentiate dark shadow from the rest in a video frame. 

To address the issues in complex shadow removal, we propose a learning-based method based on Dynamic Thresholding

and Transfer Learning (DyTTL) that deals with light and dark shadows differently based on the aforementioned properties.

In summary, a video frame is processed with background subtraction and results in a foreground silhouette that encloses

the moving foreground object and possibly a variety of shadows in different shades. Based on the color variation of the fore-

ground object, thresholds are dynamically decided to remove the light shadows. Using pixels from annotated video frames

as training examples, a classifier is developed as the initial model for the dark shadows in the video under processing. Using

the spatial correlation of image pixels, the most likely neighboring pixels are recruited as training examples to update the

classifier. 

3.1. Calculating thresholds for light shadow removal 

Light shadow changes only the intensity of a pixel. Yet, due to noise, the hue (i.e., color) of a pixel varies slightly over

time. Hence, an upper bound for hue difference (denoted by τ h ) and brightness decrement (denoted by τ i ) are used to

model light shadows. In this model, the intensity of a shadow-affected pixel decreases, and the difference is within τ i ,

subject to the maximum hue change of τ h induced by noise. Hence, τ h can be estimated by computing the average hue

difference of pixels in the background. To compute τ h for a video, the candidate pixels are determined with background

subtraction. Only those pixels that are in the background in a temporal range are used. Alternatively, if there are many

initial frames that contain only stationary objects (i.e., background), the entire frame can be used in the estimation of τ h . 

Following the above idea, the upper bound of intensity difference τ i to the background pixels can be computed by

averaging the pixel intensity in a temporal and spatial neighborhood. Since shadow always reduces the brightness, it is

plausible to assume the subtraction of the shadow affected pixel from the corresponding background pixel is always positive.

This intensity difference accounts for the variations induced by the imaging factors such as noise, quantization error, etc., as

shown in Fig. 3 (c). It is also representative of the changes made by light shadows. Note that Fig. 3 (c) depicts a broad range

of hue difference for the background pixels. Given that the background is stationary, it is expected that both the intensity

and hue differences are fairly small. The existence of large hue difference is caused by noise and quantization error. For

a typical video frame with 169,016 background pixels, the number of pixels with hue difference greater than 0.2 is 2798,

greater than 0.5 is 2765, and greater than 0.9 is 1837. It is clear that the percentage of light shadow pixels with large hue

difference is very low (in the range of 0.01%). 

3.2. A learning method for dark shadow removal 

In contrast to light shadow, dark shadow introduces much brightness and hue changes, which makes it difficult to be

separated from the foreground object using thresholding method (as shown in Fig. 3 (b) and (d)). By increasing the threshold

for intensity and raising the tolerance factor for hue variation, erroneous removals of the foreground object is likely to

happen. To address this issue, supervised learning methods have been used [20,21] . Many machine learning methods work

well under an assumption that the training and testing data are drawn from the same distribution. When this distribution

changes, the existing models need to be rebuilt from scratch, which is expensive and inefficient. The open challenge is the

capability to adapt to processing videos that are in different lighting conditions from the training examples. 

To remove dark shadows, we propose a learning-based method based on k-Nearest Neighbor (kNN) classifier. In this

learning method, a general model H for dark shadow is first developed using manually segmented video frames. This model

H is used as the base classifier for videos. For each instance in X , a set of features are extracted from the video frame as

follows: 

• Intensity and hue difference (d i and d h ) 

Different from background noise and light shadow, dark shadow introduces much greater changes to the intensity and

hue of a pixel. In particular, the brightness of a shadowed area is reduced. These differences are computed with respect

to the average intensity and hue of the background model: 

d i (u, v ) = H̄ (B (u, v )) − H(I(u, v )) , 

d h (u, v ) = V̄ (B (u, v )) − V (I(u, v )) , 

where H ( · ) and V ( · ) denote the hue and intensity, respectively; H̄ (·) and V̄ (·) denote the average hue and intensity

components of the HSV space, respectively; I ( u, v ) and B ( u, v ) denote an image pixel and a pixel in the background

model, respectively. 

• Pixel color in RGB space (r, g, and b) 

Comparing to the intensity and hue difference, RGB color gives an approximate range of the shadow, which complements

the difference feature. 
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Table 1 

Videos acquired for our experimental evaluations. 

Videos Resolution Lighting condition 

A 320 × 568 Bright 

B 320 × 568 Moderate 

C 320 × 568 Dim 

D 320 × 568 Bright 

E 720 × 1280 Moderate 

F 720 × 1280 Variable 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Local entropy (e) 

Local entropy, e ( u, v ), is used to differentiate the foreground object that might have similar color to the shadows: 

e (u, v ) = −
∑ 

i 

p i logp i , 

where p i is the probability of a color in a M by M window. Due to the greater homogeneity of the shadow region, its

entropy is lower than that of the object. 

When a new video is processed, H is applied to identify dark shadow pixels in the video frames, and the neighboring

pixels of the most confident shadow are recruited as training examples to update this model, which make H fine-tuned to

the variations of the new video such as brightness and tone changes. Our assumption is that the close neighboring pixels of

a dark shadow pixel are most likely to be a dark shadow pixel as well. The new examples I ( u, v ) must satisfy the following

criteria to be selected for updating the base classifier H: 

• The distance to the most confident dark shadow pixel is less than τ d . 

• The difference of the intensity of the candidate example pixel to the background pixel is greater than τ i . 

• The difference of the hue of the candidate example pixel to the background pixel is greater than τ h . 

Algorithm 1 presents our learning-based dark shadow removal method. In this algorithm, �u, v y ( u, v ) gives the total num-

Algorithm 1 Transfer learning-based dark shadow detection. 

1: for t ← { 1 , 2 , . . . , T } do 

2: H(I t (u, v )) → y (u, v ) 
3: if 

∑ 

u, v y (u, v ) ≥ εs then 

4: S ← ∅ 
5: for I t (u, v ) : H(I t (u, v )) = 1 and C(I t (u, v )) ≥ εc do 

6: Get I t (u ′ , v ′ ) : || I t (u ′ , v ′ ) − I t (u, v ) || 2 ≤ τd 

7: if I t (u ′ , v ′ ) satisfies the above criteria and H(I t (u ′ , v ′ )) 	 = 1 then 

8: S ← S ∪ I t (u ′ , v ′ ) 
9: end if 

10: end for 

11: Update H with examples in S 

12: end if 

13: end for 

ber of dark shadow pixels and εs is the minimum number of dark shadow pixel to trigger classifier update. Set S holds the

new training examples and is initialized with an empty set. Given a dark pixel I t ( u, v ), an instance I t ( u ′ , v ′ ) is added to S

when it satisfies the distance and confidence criteria. Function C ( · ) gives the confidence of the prediction of an instance,

and the minimum confidence of a dark pixel to serve as a start point for finding new examples is εc . 

4. Experimental results 

4.1. Experimental data and settings 

To evaluate our method, we acquired 6 indoor videos in rooms and corridors using two cameras (camera on an iPhone

6 and camera on an ASUS laptop) with different lighting conditions. Table 1 lists the properties of videos used in our

experiments. The color depth of the videos is 24 bits and the frame rate is 30 frames per second. Exemplar frames are

depicted in Fig. 4 . 

In our implementation, we adopt ViBe [12] as the background subtraction method for its simplicity and efficiency. How-

ever, our method can be combined with any similar method for shadow removal from videos. In ViBe, each pixel in the
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Fig. 6. Ground truth of human silhouette. (a) and (b) are the ground truth images with little shadows. (c) and (d) are the ground truth images with 

significant amount of shadows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

background model consists of a set of values that describe the possible color range, which is updated randomly in the pro-

cess of background subtraction. The size of this set is suggested to be 20 based on empirical evaluations of the efficiency

and accuracy [12] , which is adopted in our implementation. 

In our experiments, a minimum number of dark shadow pixels in a video frame is used to control if and when the

classifier retraining starts, which is set to 300. When selecting pixels as new training examples, dark pixel confidence is

at 100% and pixels in the 4-neighborhood, i.e., τd = 1 , of the most confident dark pixel are candidate training pixels. The

distance metric of kNN classifier is Euclidean distance. 

Fig. 5 illustrates exemplary frames of our shadow removed foreground segmentation results. The left column depicts the

original frames from our videos; the middle column depicts the background subtraction results using ViBe method; the

right column depicts the shadow removed foreground segmentation results using our method. It is clear that when shad-

ows are present the foreground object is greatly distorted in the background subtraction results. The shadow caused erro-

neous foreground regions could be connected to or disconnected from the human silhouette and vary in size and shape. It

is demonstrated that our proposed method successfully removes the shadows and introduces little distortions to the fore-

ground object. Note that there are voids (dark pixels) inside the human silhouette or imperfect foreground segmentation in

the final results, which are, however, inherited from the background subtraction outcomes. Also shown in these examples

is that the lighting conditions in these video frames are clearly different and hence the brightness of shadow varies. Our

method is able to adapt to the videos and remove shadows correctly. 

4.2. Accuracy analysis 

Since we evaluate the performance of shadow removal, it is needed to have reference images of shadows only. However,

it is extremely challenging to delineate the shadow region in a video frame even for manual tracing. Alternatively, we pre-

pared the ground truth images of the human silhouette. Another consideration is to exclude errors from the background

subtraction process. Due to noise and similar color of the human figure to the background, the output of background sub-

traction usually contains erroneous segmentation. To suppress the impact of such error to our evaluation of shadow removal,

our ground truth is based on the output of the background subtraction procedure that excludes the shadow areas by manual

tracing on the resulted foreground object. Fig. 6 depicts a few examples of our ground truth of human silhouette. Fig. 6 (c)

depicts a ground truth frame that contains errors (black pixels in the upper body) from the ViBe method [12] . In our ex-

periments, we created 60 reference images with the manually segmented human silhouette, among which 25 contains very

little shadows and 35 contains a significant amount of light shadows, dark shadows, or a mixture of both. 

A key factor for dark shadow removal is the local entropy that differentiates grayish or dark foreground object from the

shadow. In our experiments, we adopt sensitivity and specificity to quantify the classification errors to the moving human

and to the shadow: 

Sensitivity = 

T P 

T P + F N 
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Table 2 

Average sensitivity and specificity of classifying shadows with different window sizes for entropy calculation. The 

values in parenthesis are the corresponding standard deviation. 

Shadow size 

Window size Small Large 

3 by 3 Sensitivity 58.5% (36.1) 88.3% (5.5) 

Specificity 98.3% (0.9) 98.2% (1.5) 

5 by 5 Sensitivity 55.2% (34.6) 87.6% (5.8) 

Specificity 98.5% (0.7) 98.2% (1.6) 

7 by 7 Sensitivity 48.1% (33.2) 87.1% (6.2) 

Specificity 98.6% (0.7) 98.1% (1.8) 

Table 3 

Average sensitivity and specificity of classifying shadows with different number of neighbors in kNN classifier. The 

values in parenthesis are the corresponding standard deviation. 

Number of Shadow size 

neighbors Small Large 

k = 3 Sensitivity 59.3% (37.6) 87.3% (5.6) 

Specificity 98.5% (0.8) 98.4% (1.4) 

k = 11 Sensitivity 58.5% (35.1) 88.3% (5.5) 

Specificity 98.3% (0.9) 98.2% (1.5) 

k = 15 Sensitivity 58.4% (35.7) 88.6% (5.3) 

Specificity 98.2% (1) 98.1% (1.5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specificity = 

T N 

T N + F P 
, 

where TP is the true positive (the correctly classified shadow pixels), TN is the true negative (the correctly classified non-

shadow pixels), FP is the false positive (the wrongly classified shadow pixels), and FN is the false negative (the wrongly

classified non-shadow pixels). Table 2 lists the average sensitivity and specificity and the corresponding standard deviation

of detecting dark shadows using three window sizes. In our comparison, we examine the performance of detecting dark

shadows in frames with a few shadows and the ones with a significant amount of shadows separately. The specificity for all

cases is above 98% with very little variations. The sensitivity, however, varies greatly, especially for the small shadow cases.

However, for frames with large shadow regions, the sensitivity achieves 88.3% and 87.1%, respectively. The lower sensitivity

of the small shadow case is mostly due to the small denominator in computing sensitivity. It is evidential that window size

of 3 by 3 exhibits the best performance for both small and large shadows. In the rest of our experiments, we use M = 3 for

computing local entropy. 

Table 3 lists the average sensitivity and specificity of shadow detection with different numbers of neighbors in kNN clas-

sifier. The results of shadow detection when the size of shadow region is small exhibit much lower sensitivity and greater

variation compared to the cases with large shadow regions. When the shadow region is small, small mis-detection is likely

to have a greater impact to the sensitivity metric because the numerator (i.e., the total count of shadow pixels) is small;

whereas the same number of mis-detection of a large shadow appears insignificant. The disparity of sensitivity with respect

to the number of neighbors, however, is trivial. In addition, the average accuracy regardless of the shadow size is about 97%.

With the goal of maximizing the correct detection of shadow pixels, k = 15 yielded the greatest overall average sensitivity

of 76.5%. 

4.3. Classifier retraining 

In our experiments, we used four frames from two videos (videos C and D listed in Table 1 ) and selected 4221 dark

shadow pixels and the equal number of non-dark shadow pixels as the training examples to create a base kNN classifier.

The retraining process starts only if there are a significant number of dark pixels (i.e., εs ) identified by the base classifier (or

the updated classifier). However, the retraining continues for a certain number of frames. Fig. 7 depicts the average number

of new training examples recruited to update the base classifier in the early stage of processing a new video. The maximum

number of frames used is 100. The error bar marks the standard deviation among the training for all videos. The average

clearly shows the declining number of new examples recruited for retraining, which implies a training convergence. 

The average sensitivity and specificity of shadow removal using different confidence levels are presented in Table 4 . The

average specificities in all cases are very close to 98.2% with small variations (standard deviation at 1.3). The average sen-

sitivity improves slightly as the confidence level increases, and when the confidence level is at 100% the retrained classifier

exhibits the greatest sensitivity at 76.6% with a standard deviation of 27. It is clear that a greater confidence level helps to

identify the most likely dark shadow pixels. On the other hand, the confidence level poses almost no effects to the perfor-
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Fig. 7. The average number of new training examples recruited to update the base classifier in the process of a new video. The error bar shows the 

standard deviation among our testing cases. 

Table 4 

Average sensitivity and specificity using different confidence levels. The values in parenthesis 

are the corresponding standard deviation. 

Confidence Sensitivity Specificity 

50% 75.6% (28.3) 98.2% (1.3) 

60% 76.0% (27.5) 98.2% (1.3) 

70% 75.7% (27.5) 98.2% (1.3) 

80% 76.3% (27.1) 98.2% (1.3) 

90% 76.3% (27.4) 98.2% (1.3) 

100% 76.6% (27.0) 98.2% (1.3) 

Table 5 

The average time (in second per frame) used for background subtraction and shadow removal. 

The standard deviation is in parenthesis. 

Videos A B E F 

ViBe 0.110 0.109 0.109 0.111 

(0.006) (0.003) (0.002) (0.003) 

DyTTL 0.532 0.610 0.532 0.284 

(0.349) (0.558) (0.348) (0.100) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mance of non-shadow pixels. This might sound counter-intuitive that a lower confidence level usually results in more dark

pixels and hence it suppresses false negative results. However, the incorrect choice of dark pixels affects modeling the dark

shadow and hence lower the count of true positive, which inherently degrades the sensitivity of detecting dark shadow. 

4.4. Efficiency analysis 

Our algorithm and ViBe method are implemented with MATLAB and tested on a PC system with Intel Core i7-4770 CPU

at 3.40 GHz and 16GB memory. Among the six videos used in our experiments, two of them (videos C and D and see

Table 1 for additional information about the videos.) were used to generate training examples for transfer learning. Hence,

they were excluded from evaluations. Table 5 lists the average time to process a frame in videos using ViBe for background

subtraction and using our method for shadow removal. The average time of our method is in the range of half a second and

varies greatly between videos, whereas ViBe takes an average of 0.11 s. 

In our experiments, we observe that the time for shadow detection within a frame was heavily affected by the size

of the foreground including shadow. Fig 8 illustrates the plots of the processing time of each frame and the size of the

foreground. In the time plots (the top panel of each sub-figure), the dashed line depicts the time used by ViBe method for

background subtraction and the solid line depicts the total time used. The difference between these two lines gives the time

used for shadow detection. In videos A, B, and E, the human subject walked away from the camera and then turn back to

approach the camera; in video F, the human subject walked across the field of view and the size changed very little. By

comparing with the time used to process each frame, it is clear that there is a strong correlation between time used for

shadow removal and foreground size. 
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Fig. 8. Processing time (top) and size of the foreground (bottom) for the video frames. 

 

 

 

 

5. Conclusion 

Shadows in indoor scenarios are usually characterized by multiple light sources that produce complex shadow patterns

of a single object. The inconsistent hue and intensity of shadows make automatic removal a challenging task. In this article,

we present a hybrid method that leverages transfer learning and dynamic thresholding for removing complex shadows

from multiple light sources in indoor environments. Our method suppresses light shadows with a dynamically computed
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threshold and removes dark shadows using an online learning strategy that is built upon a base classifier trained with

manually annotated examples and refined with the automatically identified examples in the new videos. 

Our experimental results demonstrate that our proposed method is able to adapt to the videos and remove shadows

effectively despite variation of lighting conditions in the environment. The average accuracy reaches more than 97%. The

sensitivity of shadow detection changes slightly with different confidence levels used in example selection for classifier

retraining, and high confidence level usually yields better performance with less retraining iterations. The shadow detection

accuracy using different window sizes for computing local entropy is very close. The window size of 3 by 3 exhibits the

satisfactory performance for both small and large shadow regions. In the evaluation of efficiency, updating kNN imposes

little impact on the processing time of a frame. Yet, more examples in a kNN model increase the decision time, which can

be circumvented with parallel processing because computing the distance of a new instance to each example is independent.

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.compeleceng.2017.

12.026 
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