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a b s t r a c t 

In real-world applications, factors such as head pose variation, occlusion, and poor image quality make 

facial expression recognition (FER) an open challenge. In this paper, a novel conditional convolutional 

neural network enhanced random forest (CoNERF) is proposed for FER in unconstrained environment. 

Our method extracts robust deep salient features from saliency-guided facial patches to reduce the in- 

fluence from various distortion types, such as illumination, occlusion, low image resolution, etc. A con- 

ditional CoNERF is devised to enhance decision trees with the capability of representation learning from 

transferred convolutional neural networks and to model facial expression of different perspectives with 

conditional probabilistic learning. In the learning process, we introduce a neurally connected split func- 

tion (NCSF) as the node splitting strategy in the CoNERF. Experiments were conducted using public CK+, 

JAFFE, multi-view BU-3DEF and LFW datasets. Compared to the state-of-the-art methods, the proposed 

method achieved much improved performance and great robustness with an average accuracy of 94.09% 

on the multi-view BU-3DEF dataset, 99.02% on CK+ and JAFFE frontal facial datasets, and 60.9% on LFW 

dataset. In addition, in contrast to deep neural networks which require large-scale training data, condi- 

tional CoNERF performs well even when there are only a small amount of training data. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Facial expression recognition (FER) has become a hot research

opic of human–computer interaction. Human facial expressions

rovide important clues concerning human emotion and behav-

or. Recognizing facial expressions is crucial to applications such

s digital entertainment, customer service, driver monitoring, and

motional robots [1–3] . There have been extensive studies, and

ethods were developed. A majority of the proposed methods

ere evaluated with constrained frontal FER, and their perfor-

ance degenerates when dealing with cases of non-frontal and

ulti-view FER [4,5] . To deal with such a challenge, this paper pro-

oses a conditional convolutional neural enhanced forests (CoN-

RF) to recognize facial expression under multi-view and uncon-

trained environment with great efficiency and robustness. 

A general FER framework consists of two major steps: feature

xtraction and classifier construction. Extracting robust facial fea-

ures and devising an effective classifier are the two key compo-

ents for the unconstrained FER task. Both local facial feature and

lobal facial feature methods have been developed for FER. The
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ccuracy of methods based on local features relies on the detec-

ion accuracy of eyes, eyebrows, nose, and lips [6–8] ; the meth-

ds based on global feature usually use texture features to rec-

gnize expressions [9–11] , which is applicable for low-resolution

mages but lacks robustness to occlusion and illumination vari-

nce. In real-world cases, the head pose variation, partial occlu-

ion, and low image quality make feature extraction a challeng-

ng task. Among the three degrees of freedom for the head poses,

aw motion introduces the greatest variation in facial images. With

espect to classification, convolutional neural networks (CNN) has

ecently gained great popularity for real-life applications because

f their superior performance and robustness. CNN automatically

earn high-level feature representations from images [1,12–14] but

emands a large training dataset and high-performance comput-

ng, e.g., GPUs [14,15] . In this paper, we propose a learning method

hat leverages a global deep salient representation and requires

 small amount of image data. Our method aims at improving

oth accuracy and efficiency in multi-view FER. The workflow of

ur proposed conditional convolutional neural network enhanced

orests (CoNERF) is shown in Fig. 1 . The deep feature is extracted

rom salient facial patches by suppressing the influence of illumi-

ation, occlusion, and low image resolution. Yaw angle is estimated

o overcome the variance among head poses. The multi-view fa-

https://doi.org/10.1016/j.patcog.2018.07.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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Fig. 1. An overview of our proposed conditional CoNERF for facial expression recog- 

nition. 
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cial expressions are estimated under the conditional probability of

head pose alignment. The multi-view facial expressions are esti-

mated under the conditional probability of head pose alignment. 

Our contributions include the following: 

1. a conditional convolutional neural network enhanced random

forests (CoNERF) for pose-aligned facial expression recognition

in an unconstrained environment, which is unified classifica-

tion trees with the representation learning from deep convo-

lution networks, by training them in an end-to-end way. Be-

sides, we introduce a neurally connected split function (NCSF)

as new split node learning in a CoNERF. The CoNERF method

can achieve fast and accurate recognized results in the limited

amount of image data, rather than a large amount of data re-

quired by CNN. 

2. a conditional probabilistic learning method for pose alignment

in multi-view facial expression recognition to suppress errors

from head pose variations. 

3. a robust deep salient feature representation based on saliency-

guided facial patches using “visual attention” mechanisms. 

The rest of this paper is organized as follows: Section 2 re-

views the related work. Section 3 presents our conditional CoNERF

method. Section 4 discusses the experimental results using publicly

available datasets. Section 5 concludes this paper with a summary

of our method. 
. Related work 

Convolutional neural network. Convolutional neural network

CNN) is a type of deep learning that can learn deep generic fea-

ures and classify data [16] . The design of CNN follows the dis-

overy of visual mechanisms in living organisms, including con-

olutional layers, pooling layers, fully connected layers and soft-

ax classification. Inspired by the success in face recognition and

mageNet Classification [15,17] , CNNs have been applied to FER

6,13,18–21] . However, the improvement heavily relies on a large

umber of training sets and high-performance computing power.

oreover, recent studies reveal that a deep CNN can learn trans-

erable features which generalize well to novel tasks for domain

daptation [12–14,22] . Bulo and Kontschieder [23] jointly tackled

eep data representation and discriminative learning within ran-

omized decision trees for semantic image labeling, which im-

roved results and significantly compressed 70 trees compared to

onventional decision trees. Yang et al. [22] proposed to extract

omplete and robust local regions and learned convolutional fea-

ures by using CNNs by densely sampling and sparsely detecting

acial points. These features are adaptive to the local regions and

iscriminative to the face expression. 

Random Forest. RF is a popular method in computer vision given

ts capability to handle large training datasets, high generaliza-

ion power and speed, and easy implementation [24–28] . It has

merged as a powerful and versatile method successful in real-

ime FER system, head pose estimation, facial point detection and

ction recognition. Sun et al. [26] employed a conditional RF for

eal-time body pose estimation from depth data. Fanelli et al.

29] presented a Hough forests for facial expression recognition

rom image sequences, which achieved a recognition rate of 76%

n MMI spontaneous expression dataset. A conditional RF also has

een proposed to estimate facial feature points under various head

oses in [25] . Multi-class RF becomes a popular method for multi-

iew facial analysis in unconstrained environment owing to their

obustness. 

Facial expression recognition. Lots of works have existed and ob-

ained excellent results on constrained frontal FER [7,29–33] . Com-

aring to frontal FER, non-frontal FER is more challenging and

ore applicable in real scenarios. However, only a part of work

ddress some challenging issues in multi-view and unconstrained

nvironment [1,6,8,34,35] . Dapogny et al. [35] proposed Pair Con-

itional Random Forests (PC-RF) to capture low-level expression

ransition patterns on the condition of head pose estimation for

ulti-view dynamic facial expression recognition. On the multi-

iew BU3D-EF dataset, the average accuracy reached 76.1%. To re-

uce head pose influence, Jung et al. [6] trained a jointly CNNs

ith facial landmarks and color images, which achieves 72.5%, and

t contains three convolutional layers and two hidden layers. The

igher accuracies are achieved with SIFT using the deep neural

etwork (DNN) [1,34] , which are 78.9% and 80.1% separately. Lopes

t al. [4] proposed a combination of Convolutional Neural Network

nd special image pre-processing steps (C-CNN) to recognize six

xpressions under head pose at 0 ° and achieved an averaged ac-

uracy of 90.96% on the BU3D-EF dataset. It is noted that head

oses have large influence for FER in an unconstrained environ-

ent. How to address pose-aligned facial expression recognition

ith limited amount of data and unconstrained multi-view envi-

onment for improved performance is still an open problem. 

. Conditional CoNERF for facial expression recognition 

The detailed steps of our proposed approach are shown in

ig. 2 . The deep feature is extracted from saliency-guided facial

atches by transferring CNN model to suppress the influence of il-

umination, occlusion, and low image resolution. CoNERF estimates
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Fig. 2. The flowchart of the proposed approach for pose-aligned facial expression 

recognition. 

Fig. 3. The salient patch sampling in a face. 
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ead poses with yaw motion, and the facial expressions are recog-

ized under the conditional probability of head pose alignment. 

.1. Deep salient feature representation 

We extract salience-driven deep features from facial patches

ith a pre-trained CNN model, i.e., VGG-face [17] . The patch sam-

ling is shown in Fig 3 . Different from randomly or densely sam-

led patches in the literature [29] , we adopt a salience detection

lgorithm to aid patch selection, which highlights sparse salient re-

ions based on image signature [36] . The image signature is com-

uted by Discrete Cosine Transform (DCT) in the algorithm, which

ontains information about the foreground of an image, underlying

he usefulness of the descriptor for detecting salient image regions.

he salience detection obtains a map that shows the probability of

alient regions in the image. In this map, the higher values rep-

esent the more informative regions as shown in Fig 3 . To sample

ore representative facial patches, we use the method that uni-

es local and global salience regions by measuring the similarity

etween each facial patch and the other patches. Let x i and x n de-

ote two patches randomly sampled from an image. The size of the

atch can be sampled at the rate 50% of the salient region. d R ( x 
i ,

 

n ) is the 2-norm of x i and x n in the map feature space, normalized

o the range [0, 1]: 

 R ( x 
i , x n ) = 

∥∥R( x i ) − R( x n ) 
∥∥

2 
, (1)

here R( x i ) and R( x n ) are the centers of patches x i and x n in the

ap feature space, respectively. 

The dissimilarity between a pair of patches is computed as fol-

ows: 

 ( x i , x n ) = 

d R ( x 
i , x n ) 

1 + c · d p ( x i , x n ) 
, (2) 
here d p ( x 
i , x n ) computes the Euclidean distance between the cen-

ers of patches x i and x n , normalized by the corresponding image

imension, width or height, to the range [0, 1]. c is a constant

nd we set c = 3 referred to [37] . A facial patch x i is considered

 salient patch if its salience s i is significant, 

 x i = 1 − exp 

{ 

− 1 

M 

M ∑ 

m =1 

D ( x i , x n ) 

} 

. (3) 

or every patch x i , we search for the most similar M patches in the

mage. In our experiments, the number of the most similar patches

s nine, i.e., M = 9 . Fig. 3 illustrates a salience map and patches

ith large salience. 

After selecting the salient patches, the multi-scale salient

atches are fed to the pre-trained VGG-face network and prepro-

essed to the size of 224 by 224. The VGG-face architecture that is

re-trained with the LFW and YTF face datasets [17] to derive deep

igh-level feature representation, as shown in Fig. 4 . The model in-

ludes 13 convolutional layers, 5 max-pooling layers, and 3 fully

onnected layers. The deep salient feature is described as: 

 

j = max 

( 

0 , 
∑ 

i 

x i c w 

i, j + b j 

) 

, (4) 

here y j is the output high-layer feature representation in the first

ully connected layer, x i c is the convolution map of the salient facial

atch x i in the last convolutional layer, w 

i, j indicates the weight

etween the i th convolution map and the j th output feature, and

 

j denotes the bias of the j th feature. The 4096-dimensional acti-

ation of the first fully connected layer is used as the final deep

alient feature representation. 

.2. Conditional CoNERF training 

.2.1. Decision nodes 

For saliency-guided facial patches, we extract a set of deep

alient features P , and P = { y j | θ} under each head pose θ . We pro-

ose a NCSF- f n to reinforce the learning capability of a splitting

ode by deep learning representation (Fig. 5). Each output of f n is

rought in correspondence with a splitting node d n ( P, Y | θ ), 

 n (P, Y | θ ) = σ ( f n (P, Y | θ )) , (5)

here σ (x ) = (1 + e −x ) −1 is the sigmoid function, Y is the

arametrization of the network and n is a decision node. 

We employ a Stochastic Gradient Descent (SGD) approach to

inimize the risk with respect to Y : 

 

(t+1) = Y (t) − η

| B | 
∑ 

(P,π ) ∈ B 

∂L (Y, π ; P ) 

∂Y 
, (6) 

here η > 0 is the learning rate, π is facial expression label and B

s a random subset (a.k.a. mini-batch) of samples. L ( Y, π ; P ) is the

og-loss term for the training sample P , which is defined as 

 (Y, π ; P ) = −
∑ 

n 

p(π | d n , Y, P ) log (p(π | d n , Y, P )) , (7)

here p ( π | d n , Y, P ) is the facial expression probability. The gradient

ith respect to Y is obtained by chain rule as follows: 

∂L (Y, π ; P ) 

∂Y 
= 

∑ 

n ∈ N 

∂L (Y, π ; P ) 

∂ f n (P, Y | θ ) 
· ∂ f n (P, Y | θ ) 

∂Y 
. (8) 

ere, we have the gradient term that depends on the decision tree

ith the splitting child nodes as follows: 

∂L (Y, π ; P ) 

∂ f n (P, Y | θ ) 
= −

∑ 

n 
(d R n (P, Y | θ ) + d L n (P, Y | θ )) , (9) 
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Fig. 4. The structure of pre-trained CNN network for deep salient feature representation. The trained network model includes 13 convolutional layers, 5 max-pooling layers, 

and 3 fully connected layers. In our work, we extract deep salient features from salient facial patches on the first fully connected layer. 

Fig. 5. The training implement of a conditional CoNERF integrated CNN and RF 

models. The implement includes learning splitting nodes by NCSF and generates 

decision life nodes. 
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where d R n (P, Y | θ ) and d L n (P, Y | θ ) denote the conditional probabil-

ities under different pose in its left and right child nodes of the

decision node, respectively. For splitting optimization, Information

Gain (IG) is used to split a node into its left and right child nodes

in the tree construction: 

˜ ϕ = arg max 
ϕ 

(H( d n ) −
∑ 

S∈{ N r ,N l } 

∣∣d S n 

∣∣
| d n | (H( d n ) ) , (10)

where 
| d S n | | d n | , S ∈ { R, L } is the probability between the number of fea-

ture samples in d L n (arriving at the left child node), set d R n (arriving

at the right child node), and H ( d n ) is the entropy of d n . 

3.2.2. Leaf nodes 

When IG is below a threshold or when a maximum depth is

reached, a leaf l is created. For a leaf node in a conditional CoNERF

tree, it stores the conditional probability p ( π | θ , l ). Therefore, we

simplify the distribution over the facial expression class and head

poses by a multivariate Gaussian Mixture Model (GMM) [38] : 

p(π | θ, l) = N(π | θ ;π | θ, �π | θ
l 

) , (11)

where π | θ and �
π | θ
l 

are the mean and covariance of the facial ex-

pression probabilities given the head pose probability, respectively.

3.3. Conditional CoNERF 

We train a conditional CoNERF to estimate head poses in nine

yaw categories: { −90 °, −60 °, −45 °, −30 °, 0 °, +30 °, +45 °, +60 °, 90 °
}. In the leaves of a conditional CoNERF forest, there are nine prob-

abilistic models of head poses. We simplify the distributions over

multi-probabilities by adopting multivariate GMM as: 

p(θ | l) = N(θ ; θ, �θ
l ) , (12)

where θ and �θ
l 

are the mean and covariance of head pose prob-

abilities, respectively. While Eq. (12) models the probability for a
ample P ending in a leaf l , the probability of the forest is obtained

y averaging over all trees: 

p(θ | P ) = 

1 

T 

∑ 

t 

p(θ | l t (P )) , (13)

here l t is the corresponding leaf for a tree T t , T is the number

f trees in CoNERF. The estimated head pose is used in the condi-

ional CoNERF for expression recognition. 

The conditional CoNERF models the probability of pose-aligned

acial expression, denoted with p ( π | P ) , which is an integration of

onditional probability for all head pose, denoted with θ : 

p(π | P ) = 

∫ 
p(π | θ, P ) p(θ | P ) dθ . (14)

o compute p ( π | θ , P ), we divide the space of head pose into dis-

oint subspaces, denoted with θ and probability of pose-aligned fa-

ial expression becomes 

p(π | P ) = 

∑ 

i 
(p(π | 	i , P ) 

∫ 
p(θ | P ) dθ ) . (15)

We select T trees from the conditional CoNERF forest F ( 	i )

ased on the estimated probability p ( θ | P ). To this end, the final

acial expression probability is computed by weighted average: 

p(π | P ) = 

1 

T 

∑ 

i 

k i ∑ 

t=1 

p(π | l t, 	i 
(P )) , (16)

here l t, 	i 
is the corresponding leaf for feature representation of

he tree. The discrete number of trees k i are computed: 

 i = T ·
∫ 
θ∈ 	i 

p(θ | P ) dθ, (17)

here 
∑ 

i k i = T . 

. Experimental results 

.1. Datasets and settings 

To evaluate our approach (available at http://covis.cse.unt.edu/

emo/CoNERF/ ), four face expression datasets were used: frontal

ohn-Kanade (CK+) dataset [39] , frontal JAFFE [40] facial expres-

ion dataset, multi-view BU-3DFE [41] dataset, and LFW [42] facial

ataset. The CK+ database is a widely used benchmark for eval-

ating expression recognition techniques, which contains 593 im-

ge sequences across 128 subjects, which contains 6 facial expres-

ion images from neutral to peak expression. The JAFFE database

ontains 213 images of 7 facial expressions (6 basic facial expres-

ions and 1 neutral) posed by 10 Japanese female models. The

ulti-view BU-3DFE database contains 100 people of different eth-

icities, including 56 females and 44 males. Six facial expressions

anger, disgust, fear, happiness, sadness, and surprise) are elicited

y various manners and head poses, and each of them includes

 levels of intensities which yield 2400 facial expression models.

http://covis.cse.unt.edu/Demo/CoNERF/
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Fig. 6. Examples of recognition results images from CK+, JAFFE, BU-3DFE and LFW 

datasets. Top row: results using images from CK+ (the first four images) and JAFFE 

datasets (the last two images on the top row). Middle row: results using images 

from the BU-3DFE dataset. Bottom row: results using images from LFW dataset. 

Table 1 

Accuracy (%) of SVM classifier using different image features. 

Features CK + JAFFE BU-3DFE LFW 

Deep salient feature 97.57 95.46 76.42 44.21 

CONV.13 from VGG-face 93.28 91.57 69.85 31.65 

FC.1 from VGG-face 96.72 93.25 76.14 35.46 

FC.2 from VGG-face 96.55 93.2 70.47 34.73 

FC.3 from VGG-face 95.17 92.59 65.5 34.26 

SIFT 78.66 65.38 51.02 30.83 

HOG 75.83 70.39 62.53 30.57 

SIFT + HOG 71.35 61.92 48.91 27.33 

Distances between 21 points 86.25 83.68 60.37 40.84 
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Table 2 

Accuracy (%) of the conditional CoNERF using different image features. 

Features CK + JAFFE BU-3DFE LFW 

Deep salient feature 99.02 98.13 94.09 60.09 

CONV.13 from VGG-face 95.27 93.34 75.36 37.19 

FC.1 from VGG-face 98.52 96.14 86.85 45.4 

FC.2 from VGG-face 98.39 94.86 83.34 42.27 

FC.3 from VGG-face 96.21 94.73 79.28 40.33 

SIFT 83.46 70.36 78.9 35.62 

HOG 89.78 89.7 74.0 36.53 

SIFT + HOG 93.48 91.75 80.93 42.11 

Distances between 21 points 95.21 95.30 80.52 55.53 

Table 3 

Confusion matrix of facial expression recognition of CK+ and JAFFE datasets. 

Anger Disgust Fear Happy Sadness Surprise 

Anger 1 0 0 0 0 0 

Disgust 0.028 0.958 0 0 0 0.014 

Fear 0 0 1 0 0 0 

Happy 0 0 0 1 0 0 

Sadness 0 0 0 0 1 0 

Surprise 0 0 0 0.009 0 0.991 

Table 4 

Accuracy (%) and standard deviations (STD) using different 

methods on CK+ and JAFFE frontal facial datasets. 

Methods # of Expression Accuracy STD. 

T-DCN [13] 6 + neutral 80.49 0.9 

HF [29] 6 87.1 0.7 

PCRF [43] 6 96.4 1.1 

AU-DNN [20] 6 92.05 0.7 

M-SVM [44] 6 93.6 0.8 

JFDNN [6] 6 97.3 1.2 

CNN [18] 6 97.8 1.3 

C-CNN [4] 6 91.64 2.5 

Conditional CoNERF 6 99.02 0.5 
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hese models are described by both 3D geometrical shapes and

olor textures with 83 Feature Points identified on each model. The

FW dataset consists of 5749 individual face images. The images

ere collected in the wild and varied in expressions, poses, light-

ng conditions, resolutions, occlusions, make-ups, etc. In our exper-

ments, we labeled six facial expressions of 50 0 0 images following

he scheme in [39] . 

Examples of facial expression recognition of CK+, BU-3DFE,

AFFE, and LFW datasets are shown in Fig. 6 . A conditional CoN-

RF model for each head pose was trained with 1086 images from

K+ dataset, 134 images from JAFFE dataset, 1722 images from the

U-3DFE dataset and 20 0 0 images from LFW dataset. In our evalu-

tion, we used 368 images from CK+ dataset, 49 images from JAFFE

ataset, 574 images from the BU-3DFE dataset, and 500 images

rom LFW dataset. We used the Caffe framework 1 [16] for imple-

enting CNN and deep salient feature representation. The impor-

ant training parameters in the experiments include learning rate

0.01), epochs (50 0 0), splitting interactive times (10 0 0) and trees’

epth(15). 

.2. Analysis of image features 

To understand the influence of features on the accuracy, we

onducted experiments with deep features and two popular clas-

ical features (SIFT and HOG) as well as the combination of them.

able 1 lists the average accuracy with eight single features and

he combination features on four expression datasets. The single

eatures include our proposed deep salient feature, the convolu-

ion feature from the 13th layer of VGG-face (CONV.13), features
1 http://caffe.berkeleyvision.or g/. 

n  

d  

u  
rom the first, second, and third fully connected layers of VGG-

ace, denoted with FC.1, FC.2, and FC.3, respectively, SIFT descrip-

ion, HOG feature, and distances between 21 facial points. The ex-

erimental results demonstrate that the proposed deep salient fea-

ure improve the average accuracy in all cases. 

Table 2 presents the average accuracy of the conditional CoN-

RF using different image features and it is clear that the pro-

osed deep salient feature obtained the best performance. With

K+, JAFFE, and BU-3DFE datasets, the accuracies are in the range

f mid to high end of 90%. On the multi-view BU-3DFE dataset, the

verage accuracy significantly improved using the deep salient fea-

ure. On the challenging LFW dataset, the recognition rate reaches

0.09% using the deep salient features, which improves 8.2% with

espect to the second best result. The conditional CoNERF exhibits

uch improved performance in comparison to the SVM classifier

see Table 1 for results of SVM), especially in the multi-view BU-

DFE and LFW datasets. It is evident that the deep salient feature

rovides a better description of the multi-view facial expression

mages. 

.3. Experiments with CK+ and JAFFE frontal facial datasets 

Table 3 shows the confusion matrix of the expression recogni-

ion with CK+ and JAFFE frontal facial datasets. The accuracies are

ll above 95% with the average accuracy of 99.02% for the frontal

aces. 

In comparison with the state-of-the-art facial expression recog-

ition methods, Table 11 lists the average accuracy and stan-

ard deviation (STD) on CK+ and JAFFE frontal facial datasets

sing Transfer learning from deep convolutional networks (T-

http://caffe.berkeleyvision.org/
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Table 5 

Confusion matrix of head pose estimation on BU-3DFE dataset. 

−90 ° −60 ° −45 ° −30 ° 0 ° 30 ° 45 ° 60 ° 90 °

−90 ° 1 0 0 0 0 0 0 0 0 

−60 ° 0.009 0.988 0.002 0 0 0 0 0 0.001 

−45 ° 0 0.016 0.981 0.001 0 0.002 0 0 0 

−30 ° 0.002 0 0.005 0.993 0 0 0 0 0 

0 ° 1 0 0 0 0.997 0.002 0 0 0.001 

30 ° 1 0 0 0 0 0.991 0.007 0.002 0 

45 ° 1 0 0 0 0 0.01 0.977 0.013 0 

60 ° 1 0 0 0 0 0 0.014 0.984 0.002 

90 ° 1 0 0 0 0 0 0 0.002 0.998 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Accuracy (%) and STD of head pose estimation using different methods 

on BU-3DFE dataset. 

Methods Features Poses Accuracy STD. 

CNN [45] Image 9 69.61 0.9 

GSRRR [34] Sparse SIFT 9 87.36 0.8 

SIFT-CNN [1] SIFT 9 92.26 0.7 

CoNERF Deep transfer feature 9 98.99 0.5 
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DCN) [13] , Hough Forests (HF) [6] , Pairwise conditional random

forests (PCRF) [43] , Au-aware deep networks (AU-DNN) [20] , Multi-

class Support vector machine (M-SVM) [44] , Joint fine-tuning in

deep neural networks (JFDNN) [6] , CNN [18] , Combined-CNN (C-

CNN) [4] and our CoNERF. Xu et al. [13] proposed a facial expres-

sion recognition model based on transfer features from deep con-

volutional networks for six expressions and one neutral expression.

The average accuracy achieved 80.49% and STD is 0.9 on the frontal

facial datasets. Fanelli et al. [29] presented a Hough forests for fa-

cial expression recognition from image sequences, which achieved

an average recognition rate of 87.1% on six expressions recognition.

Dapogny et al. [43] proposed to learn Random Forest from hetero-

geneous derivative features upon pairs of images and achieved the

average accuracy of 96.4% in the front facial expression datasets.

Au-aware deep networks [20] constructed a deep architecture for

six expression recognition by elaborately utilizing the prior knowl-

edge that the appearance variations caused by expression can be

decomposed into a batch of local facial Action Units. The final

recognition results can be obtained 92.05% of average accuracy and

0.7% of STD. Jung et al. [6] proposed a jointly deep network based

on two different models , such as temporal appearance features

and temporal geometry features, which obtained an average ac-

curacy of 97.3% and STD of 1.2%. Mollahosseini et al. [18] uses a

deep CNN architecture to address six expression recognition and

achieved the average accuracy of 97.8%. Lopes et al. [4] used a

combination of CNNs and special image pre-processing steps to

achieve the average accuracy of 98.8% on CK+ dataset and 84.48%

on JAFFE datasets, whose average accuracy can reach 91.64% with

STD of 2.5% on the two frontal datasets. Our CoNERF method out-

performs other methods with an average accuracy of 99.02% in the

front facial expression recognition on the CK+ and JAFFE datasets.

The lowest STD is 0.5% using our proposed method (Table 4). 

4.4. Experiments with multi-view BU-3DFE dataset 

When dealing with multi-view images, the head pose is esti-

mated for correction of pose-induced inconsistency in expression

recognition. A 4-fold cross-validation was conducted. 

4.4.1. Head pose estimation 

For head pose estimation, we use the same settings as the fa-

cial expression recognition. Each image in the BU-3DFE dataset is

automatically annotated with one out of the nine head pose labels

in the yaw rotation ({ −90 °, −60 °, −45 °, -30 °, 0 °, +30 °, +60 °, +75 °,
90 ° }). We train a CoNERF of 50 neural trees using 15,498 head

pose images. Table 5 shows the confusion matrix of head pose es-

timation on BU-3DFE dataset. The CoNERF estimated 9 head pose

classes in the horizontal direction and achieved the average accu-

racy of 98.99%. Examples of the estimated head pose are shown in

Fig. 6 . Our method aligned head poses for expression recognition. 

Table 6 lists the comparison results of our CoNERF method,

CNN [45] , GSRRR [34] , and SIFT-CNN [1] . The CNN [45] uses

AlexNet architecture, which contains three convolutional layers and
wo fully connected layers. The filter size is 5 by 5. The input

mages are rescaled to 224 by 224. The average accuracy of CNN

s 69.61% with STD of 0.9. The GSRRR algorithm [34] based on

parse SIFT features obtains an accuracy of 87.36%. The average ac-

uracy using the improved SIFT-CNN proposed in [1] is 92.26%. Our

oNERF method achieves the average accuracy of 98.99%, which is

ompetitive to the methods above. The STD of 0.5 of our method

emonstrates the robustness of the proposed CoNERF for head

ose estimation. 

.4.2. Pose-aligned facial expression recognition 

Table 7 lists the confusion matrices under different head poses

rom the BU-3DFE dataset. The average accuracy of expression

ecognition is 94.09% under overall head poses. The highest accu-

acy is 96.424% of sadness followed by that of surprise, happiness,

nd anger, which are above 95%. The lowest accuracy is 87.95% for

isgust. 

The accuracy reached 95.98% under head pose at 0 °. The lowest

ccuracy is 87.8% under head pose at 90 °, which is partly caused

y a great degree of self-occlusion. Nevertheless, it is demonstrated

hat our proposed method achieved robust results under large

ead pose motion. 

The average accuracy of our CoNERF method is compared with

hat of CNN, Local binary patterns based SVM(LBPs-SVM) [9] ,

CRF [35] , JFDNN [6] , Coupled gaussian process regression

CGPR) [8] , Group sparse reduced-rank regression (GSRRR) [34] ,

eep neural network-driven SIFT feature (SIFT-CNN) [1] and C-

NN [4] in Table 8 . The CNN in our experiment contains three

onvolutional layers followed by three max-pooling layers and two

ully connected layers. Each filter is of size 5 × 5 and there are 32,

4, and 128 such filters in the first three layers, respectively. The

umbers of the hidden nodes in two fully connected layers are

024 and 512. The input images are rescaled to 224 by 224. 

The accuracy of the CNN on BU-3DFE dataset is 68.9% as pre-

ented in Table 8 . The accuracy of multi-class SVM with LBP and

GBP in [9] is 71.1%. Dapogny et al. [35] proposed pair condi-

ional random forests to capture low-level expression transition

atterns on the condition of head pose estimation for multi-view

ynamic facial expression recognition. On the pose variances BU-

DFE dataset, the average accuracy reaches 76.1%. JFDNN achieves

2.5% which contains three convolution layers and two hidden lay-

rs, where the filters in the three convolution layers are in size

 × 5, the numbers of the hidden nodes are set to be 100 and 600.
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Table 7 

Confusion matrix of facial expression recognition using the BU-3DFE dataset under various head poses. 

Head pose 0% Head pose 30% 

Anger Disgust Fear Happy Sadness Surprise Anger Disgust Fear Happy Sadness Surprise 

Anger 0.977 0 0.02 0 0.003 0 0.977 0 0.02 0 0.003 0 

Disgust 0.08 0.904 0 0.006 0.01 0 0.08 0.904 0 0.006 0.01 0 

Fear 0 0.06 0.901 0.039 0 0 0 0.06 0.901 0.039 0 0 

Happy 0 0.002 0.011 0.986 0 0.001 0 0.002 0.011 0.986 0 0.001 

Sadness 0.02 0.03 0 0 0.95 0 0.02 0.03 0 0 0.95 0 

Surprise 0 0 0.01 0.0 0 0 0 0.99 0 0 0.01 0.0 0 0 0 0.99 

Head pose 45% Head pose 60% 

Anger 0.959 0.03 0 0 0.011 0 0.889 0.101 0.01 0 0 0 

Disgust 0 0.94 0.01 0.01 0 0.02 0.03 0.95 0 0.02 0 0 

Fear 0 0.0 0.863 0.063 0 0 0.011 0.01 0.874 0.053 0 0.052 

Happy 0 0 0.011 0.989 0 0 0 0.011 0.011 0.978 0 0 

Sadness 0.034 0.023 0.012 0 0.931 0 0.046 0 0 0 0.954 0 

Surprise 0 0.01 0 0.02 0.01 0.96 0.01 0.01 0.01 0.01 0.01 0.95 

Head pose 90% Overall 

Anger 0.889 0.03 0 0.03 0.03 0.021 0.955 0.015 0.005 0.005 0.019 0.011 

Disgust 0.03 0.85 0.08 0.02 0.01 0.01 0.037 0.933 0.009 0.007 0.001 0.013 

Fear 0.063 0.042 0.789 0.084 0.01 0.012 0.012 0.036 0.88 0.037 0.009 0.026 

Happy 0.011 0 0.043 0.935 0 0.011 0 0.004 0.014 0.963 0.002 0.017 

Sadness 0.011 0.022 0.012 0.012 0.943 0 0.02 0.01 0.005 0 0.965 0 

Surprise 0 0.02 0.08 0.03 0 0.87 0.006 0.011 0.013 0.014 0.003 0.952 

Table 8 

Accuracy (%) and STD using different methods on multi-view BU-3DFE 

dataset. 

Methods Features Poses Accuracy 

CNN Image 9 68.9 (1.5) 

LBPs-SVM [9] LBP and LGBP 7 71.1 (1.2) 

PCRF [35] Heterogeneity 5 76.1 (1.0) 

JFDNN [6] Image and landmarks 5 72.5 (1.3) 

CGPR [8] facial landmarks 5 76.5 (0.8) 

GSRRR [34] Sparse SIFT 9 78.9 (1.0) 

SIFT-CNN [1] SIFT 9 80.1 (0.8) 

C-CNN [4] Intensity 1(0 °) 90.96 (1.0) 

Conditional CoNERF Deep salient feature 9 94.09 (0.6) 

Table 9 

Average accuracy (%) of pose-aligned FER under each head pose on 

the BU-3DFE dataset. 

Methods 0 ° 30 ° 45 ° 60 ° 90 °

Conditional CoNERF 95.08 93.55 95.3 93.21 87.8 

GSRRR [34] 78.9 80.1 80.1 78.4 77.0 

SIFT-CNN [1] 79.7 80.7 81.0 80.5 79.51 
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Table 10 

Confusion matrix of head pose estimation on LFE 

dataset. 

−90 ° −45 ° 0 ° 45 ° 90 °

−90 ° 0.895 0.099 0.006 0 0 

−45 ° 0.01 0.864 0.126 0 0 

0 ° 0.001 0.036 0.903 0.058 0.003 

45 ° 0 0 0.045 0.863 0.092 

90 ° 0 0 0.018 0.107 0.875 

Table 11 

Accuracies (%) and STDs of head pose estimation using different methods on 

LFW dataset. 

Methods Features Poses Accuracy STD 

CNN [45] Image 5 65.25 1.2 

GSRRR [34] Sparse SIFT 9 77.2 0.9 

SIFT-CNN [1] SIFT 5 83.4 0.9 

CoNERF Deep saliency-guided feature 5 88 0.7 
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he higher accuracies are achieved with SIFT using GSRRR [34] and

IFT-CNN [1] , which are 78.9% and 80.1%, respectively. Our method

chieved 94.09%, which is highly competitive to the aforemen-

ioned methods. The standard deviation of 0.6% using our method

emonstrates the robustness of our proposed method. In addition,

opes et al. [4] used intensity features to recognize six expressions

ith head pose at 0 ° and achieved an averaged accuracy of 90.96%.

n contrast, our method resulted in an average accuracy at 95.98%

or the same case. 

Table 9 lists the average accuracy under five head poses of

ur method, GSRRR [34] and SIFT-CNN [1] . The accuracy of our

ethod is significantly greater than that of the other two meth-

ds in terms of different views. The highest accuracies achieved by

ethods [1,34] are 81.0% and 80.1% at 45 °, respectively. The high-

st accuracy of our method is achieved under the head pose 0 °,
hich is are 95.08%. And the lowest accuracies appear both under

he head pose 90 ° because of occlusion and facial deformation. 
.5. Experimental results of in-the-wild LFW facial dataset 

.5.1. Pose estimation 

The images from LFW dataset vary in expressions, poses, light-

ng conditions, resolutions, occlusions, make-ups, etc. We catego-

ized the images using 5 yaw angles ( −90 °, −45 °, 0 °, +45 °, 90 °) to
epresent left, partial left, front, partial right, and right. Table 10

hows the confusion matrix of head pose estimation. The CoNERF

stimated five head pose classes in the horizontal direction and

chieved an average accuracy of 88%. Examples of the estimation

esults are shown in Fig. 6 . 

Table 11 lists the average accuracy of CNN [45] , GSRRR [34] ,

IFT-CNN [1] and our method using the LFW dataset. The param-

ters used in this experiment is the same as the one reported

n Section 4.4.1 . It is clear that our proposed method yielded the

ighest average accuracy with the smallest STD. This is consistent

ith the results produced with BU-3DFE dataset. 

.5.2. Expression recognition 

Table 12 shows the confusion matrix of expression recogni-

ion. The average accuracy achieved 60.9%. The highest accuracy is

5.24% of happiness followed by surprise and sad, which are more
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Table 12 

Confusion matrix of posed-aligned FER on LFW dataset. 

Anger Disgust Fear Happy Sadness Surprise 

Anger 0.559 0.202 0.166 0 0.009 0.006 

Disgust 0.137 0.505 0.087 0.02 0.111 0.139 

Fear 0.055 0.106 0.595 0.016 0.184 0.004 

Happy 0.002 0.16 0.01 0.852 0.004 0.012 

Sadness 0.146 0.142 0.115 0 0.572 0.025 

Surprise 0.019 0.121 0.156 0.013 0.036 0.655 

Table 13 

Average accuracy (%) of facial expression recognition under 

different head poses on the LFW dataset. 

Methods 0 ° 45 ° 90 °

Conditional CoNERF 64.85 59.4 56.51 

PCRF [43] 52.1 42.9 40.2 

SVM based on Gabor features 45.4 36.57 42.6 

RF based on Gabor features 46.8 46.23 44.7 

Table 14 

Average accuracy of different methods trained with small data sets. 

Convolutional models Number of images. Accuracy(%) STD. 

# Training # Testing 

ResNet-50 [46] 1086 368 82.6 0.8 

AlexNet [45] 1086 368 78.96 0.9 

T-DCN [13] 1086 368 80.49 0.7 

JFDNN [6] 1086 368 95.3 1.0 

Conditional CoNERF 1086 368 99.02 0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Examples of distortions images in our experiments. 

Fig. 8. Average accuracy with different degrees of occlusion. 

4

 

d  

t  

t  

S  

v  

f  

d

4

 

e  

T  

t  

i  

R  

s  

r  

m  

o  

c  

f  

e  

i  

t  

i  

p  

i  

s  

f

than 65.48%. The lowest accuracy is 50.53% of disgust. Relatively

low accuracies appear between these expressions because the LFW

dataset introduced more noises and spontaneous expressions than

other datasets. 

Table 13 shows the recognition accuracy using our method,

PCRF [43] , SVM and RF methods. The features used for SVM and RF

include Gabor filter responses with eight rotation angles and five

phase shifts. It is shown that the accuracy of our method is greater

than the other methods. The highest accuracy of these methods

is achieved under the head pose 0 °, which are 64.85% using our

method, 52.1% using PCRF, 45.4% using SVM, and 46.8% using RF

method. And the lowest accuracies appear both under the head

pose 90 °. On this challenging dataset, our method outperformed

the other methods under each head pose. 

4.6. Training with small datasets 

To evaluate our method in small training datasets, we com-

pared the accuracy of five methods trained with the same small

dataset, including conditional CoNERF with deep salient feature,

AlexNet [45] , ResNet50 [46] , T-DCN [13] , and JFDNN [6] . The

weights of AlexNet, ResNet50, T-DCN, and JFDNN are refined from

the existing models instead of the randomly initialized. The ex-

periments were conducted with CK+ facial expression, which in-

cludes 1086 images for training and images for testing. A five-fold

cross-validation was conducted. Table 14 lists the average accuracy

of these methods. In our experiments, AlexNet [45] architecture

includes five convolutional layers and three fully connected lay-

ers. The average accuracy achieved by AlexNet was 78.96%. Shallow

residual network model-ResNet50 [46] yielded an average accuracy

of 82.6%. JFDNN [6] resulted in an average accuracy of 95.3%, which

integrates two joint convolutional neural network models. Our pro-

posed conditional CoNERF achieved an average accuracy of 99.02%

and a Standard Deviation at 0.5. It is demonstrated that the condi-

tional CoNERF exhibits the best performance with a small amount

of training data. 
.7. Evaluation of image distortion 

This section presents our evaluations of the impact of image

istortions, which include occlusion, additive noise, scale varia-

ion, and pose variation. Fig. 7 depicts a few examples of the dis-

orted images. We compared the proposed method with the CNN,

VM, and RF. The CNN in our experiments contains three con-

olutional layers followed by three max-pooling layers and two

ully connected layers. The feature used in RF and SVM is HOG

escription. 

.7.1. Analysis of occlusion 

In addition to the natural occlusions in the images, we also gen-

rated synthetic partial occlusion (see Fig. 7 (a) for an example).

he occlusion rate of our synthetic images is in the range of 20%

o 80% and the occlusion is randomly placed on the face. Fig. 8

llustrates the average accuracy of the conditional CoNERF, CNN,

F, and SVM at different occlusion rates. The horizontal axis repre-

ents the occlusion rates up to 80% of the face. The vertical axis

epresents the recognition accuracy. With 60% of occlusion, our

ethod achieved an average accuracy above 63%. The accuracy of

ur method is consistently higher than that of the others for all oc-

lusion rate. The accuracy of our proposed method degrades grace-

ully when the occlusion rate is less than 50% and this trend accel-

rates beyond that point. As the portion of occluded face increases,

t becomes harder for recognition. It is foreseeable that with to-

al occlusion, the recognition accuracy reaches zero. It is interest-

ng that when occlusion rate is moderate (at or below 40%), CNN

erforms worse than RF and SVM; whereas our proposed method

mproves the performance by more than 10%. Our experimental re-

ults demonstrate that the proposed method exhibits greater per-

ormance in the case of partial occlusion. 
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Table 15 

Average accuracy (%) of noisy image at four different noise levels. 

Methods Gaussian noise Salt & Pepper noise 

0.05 0.1 0.15 0,2 0.05 0.1 0.15 0,2 

CNN(3conv + 2fc) 6 8.6 8 63.78 61.53 57.84 69.18 66.82 63.20 58.65 

SVM 72.93 70.4 68.17 58.32 77.35 71.2 64.23 59.5 

RF 74.3 73.4 69.5 59.61 79.21 75.9 70.74 66.32 

Conditional CoNERF 84.52 80.8 78.55 74.29 91.52 87.52 85.19 81.20 

Fig. 9. Results of ResNet-50 (first row) and conditional CoNERF (second row). The 

bottom row shows the ground truth. 

Fig. 10. Images with Gaussian (first row) and salt-pepper noise (scend row) amount 

of 0.05, 0.1, 0.15, 0.2. 
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Table 16 

Average accuracy with images at different resolutions. 

Methods 100% 50% 25% STD. 

SVM 85.31 73.52 58.19 5.18 

RF 83.4 77,65 65.43 4.73 

CNN 68.9 69.44 67.83 0.74 

Conditional CoNERF 95.29 94.89 94.96 0.24 

Fig. 11. Average accuracy with and without pose-aligned conditional probability. 
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In real-world cases, people wear attachments including sun-

lasses, masks, and hats. LFW dataset (see Table 11 ) collects face

mages with occlusion. Fig. 9 shows the FER results of ResNet-

0 [46] and our conditional CoNERF on some challenging cases

rom LFW dataset. It is evidential that our method improves the

obustness of FER to partial occlusions under varied situations. 

.7.2. Analysis of noise 

To evaluate the influence of noise, we created distorted images

y adding Gaussian and Salt & Pepper noises. We randomly se-

ected 10 0 0 images from the CK+ dataset and created distorted

mages. The noise magnitudes are 0.05, 0.1, 0.15, and 0.2. Fig. 10

llustrates examples of the distorted images. A four-fold cross-

alidation was conducted. Table 15 presents the average accuracy.
he average accuracy declines with the increment of noise levels

or all methods and our proposed method achieved the best per-

ormance under various additive noisy conditions. In contrast to

he second best results, conditional CoNERF improves the accuracy

y a minimum of 10.08% for Gaussian noise and 15.31% for Salt &

epper noise. 

.7.3. Scale analysis 

To evaluate the impact of image resolution, we resized the im-

ges to a half and a quarter of their original size. Table 16 presents

he average accuracy of our proposed method and the other three

ethods as well as the standard deviations across all scales. The

ccuracy of our method is above 94% for all cases, and the results

re quite consistent compared to the other methods as demon-

trated with the STD. The results of RF and SVM vary greatly with

he change of image scale. 

.7.4. Head pose alignment analysis 

Fig. 11 shows the results with and without pose-aligned condi-

ional probability. As depicted in this figure, our method that em-

loys pose-aligned conditional probability outperformed the other

ithout pose-aligned conditional probability on both LFW and BU-

DFE datasets. The improvement is about 21%. It is clear that pose

lignment is an important factor of expression recognition. 

.8. Time complexity 

Table 17 reports the average time of facial expression recogni-

ion using the BU-3DFE dataset. The experiments were conducted

n a PC with Intel Core i7-6700 CPU at 4 GHz, 32 GB memory,

nd NVIDA GeForce GTX 1080. The programs were implemented

ith MATLAB. Both random forest and SVM were executed on CPU

nd Conditional CoNERF and CNN were executed with support of

PUs. Comparing Conditional CoNERF and CNN, the training time
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Table 17 

Computation time of training and testing of different methods. The training times are in second 

and the testing times are in micro-second. 

Methods Using CPU Using GPU 

Conditional CoNERF RF SVM Conditional CoNERF CNN 

Training Time − 6540 s 808 s 1620 s 16920 s 

Testing Time 135 ms 128 ms 378 ms 113 ms 160 ms 
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of Conditional CoNERF is less than one tenth of the time used by

CNN and the testing time of Conditional CoNERF is also much less

than that of CNN, improved by 30%. The training of SVM is most

efficient among all methods, despite that SVM was trained with

support of CPU only. Yet, its testing time is much inferior to the

others, almost triple the time of Conditional CoNERF with support

of CPU only. In all cases, Conditional CoNERF with support of GPU

exhibits the greatest efficiency and its training efficiency is much

superior to Random Forest (using CPU only) and CNN (using GPU).

5. Conclusion 

This paper describes a novel conditional CoNERF method for

pose-aligned facial expression recognition in multi-view and the

unconstrained environment. Robust deep salient features are ex-

tracted from saliency-guided facial patches using transfer CNN

model and the conditional CoNERF unifies random trees with the

representation learning from deep convolutional neural networks.

A neurally connected split function is introduced to CoNERF to split

node learning. Our method performs well due to transferring a

pre-trained CNN to fast decision node splitting in a Random For-

est. The experimental results demonstrated that our method was

of great robustness and efficiency in various poses, occlusions, and

noise conditions. 

Experiments were conducted using public CK+, JAFFE, BU-3DEF

and LFW datasets. Our results demonstrated that the proposed

deep salient feature outperformed the other popular image fea-

tures. Compared to the state-of-the-art methods, the conditional

CoNERF achieved improved performance and great robustness with

an average accuracy of 94.09% on the multi-view BU-3DEF dataset,

99.02% on CK+ and JAFFE frontal facial datasets, and 60.9% on in-

the-wild LFW dataset. The average time for performing a pose-

aligned FER is about 113 ms. The average accuracies of head pose

estimation on BU-3DEF and LFW datasets are about 98.9% and

89.7%. Our method achieved the great performance for head pose-

varied facial expression recognition with a limit number of train-

ing examples, which is a significant advantage in contrast to deep

neural networks. 

In future, we plan to explore real-time CoNERF model for spon-

taneous facial expression recognition in videos. As demonstrated

in our efficiency analysis, the prediction time (i.e., testing time) is

in the range of one tenth of a second. To conduct video analysis

in real-time, it is necessary to reduce the prediction time to less

than 50 ms per frame. A possible solution is to employ an atten-

tion model to search for the peak frame in a video and to leverage

the spatial-temporal expression features in the frame sequence to

improve efficiency. 
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