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Human pose detection has been an active research topic, and many studies have been done to address 

different problems in the topic. However, very few methods are proposed to detect joints in the human 

body. In this paper, we proposed a novel hybrid framework to detect joints automatically by using depth 

camera. In the proposed method, joints are categorized into two classes: implicit joints and dominant 

joints. Implicit joints are the joints on the torso, such as neck and shoulders. Dominant joints include 

elbows and knees. In the hybrid framework we proposed, a loose skeleton model is used to locate implicit 

joints, and data-driven method is applied to detect dominant joints. The highlight of the proposed work 

is that geodesic features of the human body are used to build the skeleton model and detect joints. 

To evaluate our work, experiments are conducted on the dataset recorded by a Microsoft Kinect and 

compared with state-of-art methods. The results demonstrate that the proposed work can deliver stable 

and accurate detection results of joints. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Human pose detection and tracking have been widely used

in many applications, such as human-computer interaction, robot

control, 3D animation creation, and home entertainment. In such

video-based detection and tracking system, the feature point of

different body parts and joints such as head, elbows, and hands,

provides the information of poses and activities of people. Many

methods [1–4] have been proposed to tracking feature points from

RGB videos that can be used for human pose detection and track-

ing. When detecting human motions, joints provide accurate infor-

mation about the poses. Joint detection provides vital information

for characterizing human pose and serves as a foundation for a

wide range of computer vision applications such as physical train-

ing and pose analysis, healthcare, entertainment, etc [5–9] . For in-

stance, knowing the precise location of human joints enables es-

timation of poses and movements, which facilitates personalized

training for applications in rehabilitation and combat tactics in-

struction. Despite recent developments in markerless human track-

ing, few methods, to our best knowledge, have been proposed for

accurately detecting human joints. Models are usually used for

identifying joints in point cloud by matching a point cloud to a
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odel and inheriting the pre-marked joints. However, the accu-

acy of the detected joints is suboptimal due to the misalignment,

hich affects the precision of tracking human movements. Alter-

atively, methods that classify point cloud into body parts have

een proposed, which leverage a database of key poses and are ro-

ust to the deformation from clothes. Yet, the variety of key poses

reatly affects the performance. To overcome the aforementioned

roblems, we proposed a method that integrates data-driven and

odel-based strategies to improve the accuracy of joint detection.

ccurate detection of joints is critical for motion and activity anal-

sis of a human and vital for delivering accurate results of detect-

ng and tracking human motions. 

There are various methods proposed to detect feature points

end points) from a different type of videos, e.g. infrared video and

epth video (time-of-flight video). Comparing with visual (RGB)

nd infrared videos, depth video shows a great advantage, which

rovides distance information that is important to overcome the

onfusion of body parts and occlusions. Depth video is the pro-

ection of the point cloud captured by depth camera (such as Mi-

rosoft Kinect). Each point carries the distance between the target

nd the camera. With the intrinsic parameters of the depth cam-

ra, position in 3D space of each point in point cloud is acquired.

here are two major strategies for detecting human poses using

epth videos, model-based and data-based strategies. The idea of

odel-based strategy is to fit a predefined 3D human model to

he point cloud acquired by the depth camera. Data based strategy

https://doi.org/10.1016/j.patcog.2017.12.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.12.020&domain=pdf
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Fig. 1. Overview of the workflow of the proposed method. 
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ses machine learning algorithm to classify points to body parts or

etect feature points using based on different features. However,

oth strategies face challenges in accurate detection of the joints

f human body. 

The objective of our work is to accurately detect joints on

he human body by combining body model and automatic feature

oint detection. Fig. 1 represents the workflow of the proposed

ramework. The human body model maps the detected extreme

oints to the corresponding body parts on the model. The skeleton

odel detects the position of implicit joints. The dominant joints

re detected after implicit joints and extreme points are located

y a shortest path based methods. The main contribution of this

ork is a hybrid framework to detect joints on the human body to

chieve robustness to different body shapes or proportions, pose

ariations and occlusions. Another contribution of this work is the

dea of using geodesic features of the human body to build a model

o guide the detection of human pose estimation. 

The rest of this article is organized as follows: Section 2 reviews

he related work on human pose detection. Section 3 presents

he hybrid framework for detecting joints on the human body.

ection 4 discusses and compares the experimental results.

ection 5 concludes this paper with future work. 

. Related work 

Markerless human body pose detection is an active research

rea in computer vision [10] and many studies have been con-

ucted that employ optical and depth videos (see [11] and refer-

nces therein). Feature points detection, 3D human body model fit-

ing or alignment, and pixel classification are the most widely used

trategies. Methods that detect feature points usually use the sil-

ouette of the human body as a graph and apply shortest distance

ethods such as Dijkstra’s algorithm to locate feature points. The

etected feature points are used to represent poses of the human

ody. Plagemann et al. [12] used Dijkstra’s algorithm to extract fea-

ure points from the human body and calculated the orientation of

ach feature point by using backtracking method. Then, the author

pplied a body part identification method to classify detected fea-
ure points to different body parts. It extracted the shape of the

rea around each detected feature point and compared with shape

eatures of different body parts from the trained data set. However,

oints remained undetected in [12] . Baak et al. [13] applied a mod-

fied Dijkstra’s algorithm to detect feature points. In [13] , the de-

ected feature points were used as query input to search possible

oses from the database. However, the feature points to this type

f method include no joints. Because Dijkstra’ algorithm is used to

ocate the extreme points (end points of body parts). 

Many methods [5,6,14–19] using human body model have been

eveloped to detect human poses. Zhang et al. [18] proposed an

pproach based on the data-driven Markov Chain Monte Carlo

DDMCMC) framework for human pose estimation. A three-level

ree structure was used as a human body model and the pose esti-

ation is formulated as a Bayesian inference problem. The tree-

tructure state space was parsed into a lexicographic order and

earched by the DDMCMC technique. Cui et al. [19] integrated

ow- and high-dimensional tracking approaches into a framework

sing a probabilistic fusion formulation. The low-dimensional ap-

roach uses motion models, whereas the high-dimensional ap-

roach tracks movements by sampling the pose space. Zuffi

t al. [7] proposed a method that used realistic and part-based 3D

uman models for human pose detection. The part-based 3D hu-

an model allows each body part in the model rotating and trans-

orming independently to fit the data. A cost function is defined

o calculate how smoothly two adjacent parts can be connected.

e et al. [8] used a set of pre-captured motion examples for ini-

ial pose estimation and the acquired data is matched to these ex-

mples for initial pose estimation and semantic labeling. Most of

he model-based methods define body parts only and use the in-

ersections of body parts as joints. Recently, Sigalas et al. [6] pro-

osed the top view re-projection method to align body model to

he point cloud of the human body. In [6] , the author re-projected

he points inside the cylinder body part model to the top surface of

he cylinder. The ratio of the number of re-projected points to the

otal number of points inside the cylinder model is computed as a

e-projection ratio. The best hypothesis position of a body model

s determined by selecting the minimum top view score (TVR)

hich includes the re-projection ratio as the key factor, along with

ther adjusting factors. The joints were defined on fixed positions

f each cylinder body part model. Handrich et al. [15] proposed a

ybrid method to detect human pose. In their work, geodesic dis-

ances were used to detect feature points of hands and elbows,

hen individual models were applied to detect feature points of

ead and shoulders. A skeleton model was applied to reject in-

orrect detection results. Schwarz et al. [16] applied Dijkstra’s al-

orithm to detect end points of limbs as primary feature points

nd fit a skeleton model to the primary feature points. Joints were

efined by the skeleton model, and the positions of joints were es-

imated by the model fitting procedure. Shen et al. [20] adopted

 hierarchical method that identifies head and torso by template

tting followed by detecting shoulders and hips. A multi-cue fu-

ion method is developed to fit a skeleton model, which extracts

D cues from synchronized multiview images and integrated them

nto a 3D representation. A volumetric reconstruction method was

mplemented to merge relevant information into a coherent struc-

ure. Zhu et al. [5] proposed a template-based method to detect

ody parts, where joints were defined as the intersections of two

onnected body part templates. Ganapathi et al. [21] applied a

odel based local optimizing method to match the human body

odel to the point cloud, and a data-driven method to detect body

arts which were used to initialize the local optimizing method. It

s clear that model-based or model involved methods usually de-

ne their human models by defining the body parts and degrees

f freedom of corresponding parts, or kinematic relationship be-

ween connected body parts. However, these methods suffer from
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different body proportions, cumulative deviation of model fitting

and local maxima during the model fitting. 

Similar to the model-based methods, most learning based

methods also focus on large body parts detection. Because compar-

ing to joints, body parts have a larger area of the human body. The

Larger area of the human body means more points on the point

cloud to learn and classify, therefore, results that are more accu-

rate can be generated. In learning based methods, joints are also

usually defined as the intersections of connected body parts. Wei

et al. [22] applied classification method in their system to detect

the initial pose and registered the human skeleton model to the

depth frame. After the skeleton model was initialized, a tracking

method was invoked to track 3D poses via a Maximum A Pos-

teriori (MAP) framework. The joints were defined by the skele-

ton model and initialized by the classification method at the be-

ginning. Shotton et al. [9] proposed two methods to estimate hu-

man poses, body part classification (BPC) and offset joint regres-

sion (OJR). Both methods estimated the positions of joints, and

cast votes for the position of joints. Buys et al. [23] used an un-

derlying kinematic model and a pixel classification method to ex-

tract the skeleton information from the depth frames. The kine-

matic model was used to constrain the extracted skeleton com-

ponents and generate the final skeleton. In learning based meth-

ods, body parts can be classified due to training procedure on

large scale of the dataset. However, the noisy or incomplete dataset

could cause incorrect classification results. The boundary of differ-

ent body parts sometimes can be ambiguous which can cause un-

stable or incorrect skeleton extraction results. Most recently, Nishi

and Miura [24] proposed a method to generate datasets of human

depth images with body part labels to enhance learning-based

pose recognition, which complements the existing datasets by pro-

viding many unusual poses such as lying and crouching. Twelve-

class labels were proposed, which include eleven body parts and

the background. 

By reviewing the all three different strategies, methods that

lack accurate joint detection could suffer ambiguous, unstable or

even incorrect detection results. Accurate detection of joints re-

mains an open question. To overcome this issue, we proposed a

hybrid framework that combines human body model and geodesic

features of human body together to detect and estimate the posi-

tion of joints. 

3. Method 

3.1. Overview 

The proposed method categorizes joints into two types, implicit

joints, and dominant joints. Implicit joints include the joints that

are close to the torso. In the proposed method, neck, left and right

shoulders, left and right hips and waist are defined as implicit

joints. Dominant joints include the joints on the limbs of a human

body. Left and right elbows and knees are categorized as dominant

joints. In practice, the dominant joints are easier to detect than the

implicit joins due to the rigidity of the bone segments of the limbs

of the human body. Implicit joints are difficult to detect. Because

implicit joints are part of the torso, and the deformation of these

joints are less significant than that of the dominant joints. On the

other hand, dominant joints carry more information about human

motion than the implicit joints. As the connections between torso

and limbs of the human body, it is still necessary to detect the po-

sition of the implicit joints. 

The proposed method employs a skeleton model of human

body. Skeleton model defines the geodesic features of implicit

joints. Extreme points (feature points on the tip of body parts) are

detected and then mapped to the corresponding parts of the skele-

ton model. Implicit joints are found based on the skeleton model.
he global shortest paths from the head to other extreme points

re used to provide candidates for joints. Finally, a data-driven

ethod is applied to each limb, to detect possible dominant joints.

he dominant joints are determined by the voting the results of

ossible joints from each limb and joint candidates on the global

hortest paths. 

.2. Extreme point detection and mapping 

.2.1. Extreme point detection 

Extreme points on a human body include the head, hands, and

eet. As part of the feature points, the spatial distribution of ex-

reme points provides general information of human pose. Let P

enote the 3D point cloud of a human body. The 3D point cloud

s calculated from the captured depth frame. Starting from a ran-

omly selected point in the 3D point cloud, denoted as p 0 , the

eodesic distance between any other point to p 0 is defined as the

hortest geodesic distance to p 0 . The geodesic distance between a

iven point to p 0 is calculated as follow: 

 g (p 0 , P (x, y )) = 

∑ 

D g (P (x p , y p ) , P (x q , y q )) . (1)

n the above equation, P ( x p , y p ) and P ( x q , y q ) are neighboring points

n the shortest path between P ( x, y ) and p 0 . D g ( ·) represents the

eodesic distance between two points on the point cloud P . To cal-

ulate the distances from each point on the point cloud to p 0 , we

dopted an iterative method to go through the whole point cloud.

tart from p 0 , each point on the point cloud calculate the distance

etween itself to its eight nearest neighbors. The shortest distance

rom each of the eight neighbors to the p 0 will be updated. For a

ew point, its distance value is calculated; for a point that bears a

istance, the distance is updated when a shorter distance is found.

 distance map is generated by computing the distances to all

oints in the point cloud, and a point with the longest distance

i.e., an extreme point), denoted with E 1 , is represented as follows:

 1 = arg max D g (E 0 , P (x, y )) . (2)

o avoid the same extreme points being repeatedly found, when

n extreme point is identified, its geodesic distance to any exist-

ng extreme point is set to zero. Therefore, when a new extreme

oint is found, it must have the longest geodesic distance to all

he existing points. Thus, five distance maps are usually required.

n the proposed method, the extreme points include head, hands,

nd feet. Let M 

i denotes the distance map, where i is the distance

ap index. The final updated distance map is as follows: 

(x, y ) = min (M 

1 (x, y ) , M 

2 (x, y ) . . . M 

n (x, y )) . (3)

urthermore, Eq. (2) is rewritten in a more general form: 

 i = arg max D g (E i −1 , P (x, y )) , i > 0 . (4)

To handle the self-occlusion, we compute the difference of

he depth value between adjacent points when a distance map

s updated. If the difference is less than a threshold δ, the two

oints are considered as lying on the same surface of the hu-

an body; otherwise, they are considered as belonging to different

ody parts. If the two points belong to different body parts, their

eodesic distance remains unchanged. Therefore, for a point in P ,

ts geodesic distance is only updated according to its neighboring

oints on the same body part. Fig. 2 shows two examples of the

esults of extreme point detection. 

.2.2. Extreme point mapping 

When extreme points are detected, there is no correspondence

etween extreme points and body parts on the skeleton model.

ithout knowing the correspondence between extreme points and

he skeleton model, it is difficult to detect the positions of joints.
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Fig. 2. Examples of extreme points. The red circles marked the position of the ex- 

treme points. (a) shows the result without self-occlusion, (b) shows the result with 

self-occlusion. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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Fig. 3. The skeleton model used in our method. The green dots represent the ex- 

treme points. Blue dots represent implicit joints (neck, waist, shoulders and hips). 

Red dots represent dominant joints (elbows and knees). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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hus, mapping the extreme points to the human body model en-

ures that the data-driven method works with the human body

odel. The mapping method starts from mapping an extreme

oint to the head. The shape feature of the area around each ex-

reme point is used to compare with an ellipse model of the head.

he area with the highest likelihood is used as a head. To map the

ther extreme points to the human body model, the geodesic re-

ationship between hands and feet is used. In the skeleton model,

he geodesic distance between the head and the hands are shorter

han the geodesic distance between the head and the feet, that is

 g (p head , p hand ) < D g (p head , p f oot ) . (5)

ith the above constraints, the extreme points of feet and hands

re separated. To determine if an extreme point of hand corre-

ponds to the left or right hand, we assume that the geodesic dis-

ance between the left hand and the left shoulder is shorter than

he geodesic distance between the left hand and the right shoul-

er, and the same logic is applied to the right hand. The relation-

hip between the left and the right hands can be described as fol-

ows: 

D g (p Lh , j Ls ) < D g (p Lh , j Rs ) , 

D g (p Rh , j Rs ) < D g (p Rh , j Ls ) , (6) 

here p Lh and p Rh represent the extreme points of left and right

ands, respectively, p Ls and p Rs represent the estimated joints of

eft and right shoulders, respectively. Estimating the position of

houlders is presented in Section 3.3.2 . The relationship between

he left and the right hands is also suitable for the left and the

ight feet. 

.3. Joint detection 

.3.1. Skeleton model 

As part of our hybrid framework, the skeleton model estimates

he positions of the implicit joints and provide constraints for data-

riven joint detection algorithm. The traditional model-based hu-

an pose detection methods [5,25–27] define the human body

odel with a collection of body parts and DOFs (degrees of free-

om) or joints with articulated structure and DOFs of joints. Our

ethod defines the human body model only by defining the over-

ll structure and general geodesic features of the human body

odel. For implicit joints, relative position and size are defined. On

he other hand, the only relative position is defined for each dom-

nant joint. Fig. 3 shows the skeleton model used in our method.
n this figure, there are three types of point, the green points rep-

esent the extreme points, the blue points represent the implicit

oint, and the red ones represent the dominant joints. 

.3.2. Estimation of the implicit joints 

The implicit joints as part of the torso are more difficult to de-

ect than the dominant joints such as elbows. However, because

mplicit joints locate within the torso, they have much-limited

OFs than the dominant joints. As a result, the model-based es-

imation methods provide reliable results for estimating the po-

ition of implicit joints. When estimating the position of implicit

oints, we take full advantage of the geodesic features of the hu-

an skeleton to focus on the possible positions of joints. The es-

imation procedure follows a top-to-bottom order. The position of

he neck is estimated first based on the position of the head. Given

he length between neck and shoulder, denoted as l ns , the left and

ight shoulders are defined as follows: 

 p i | p i ∈ P ; D g (p neck , p i ) = l ns ; (7) 
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Fig. 4. Illustration of the constraints for estimating shoulders, waist, and hips. 
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D g (p head , p i ) > D g (p head , p neck ) } 
{ p j | p j ∈ P ; D g (p neck , p j ) = l ns ;
D g (p head , p j ) > D g (p head , p neck ) } , (8)

where i � = j and p i , p j = arg max i, j (A (p i , p j )) . 

In the above definition, p i and p j are two points in P, A ( ·) is the

function to calculate the Euler angle between p i and p j . Eq. (9) en-

sures left and right shoulder are separated as much as possible.

The hips are defined in a similar way to the shoulders because

the structure of neck-shoulders and waist-hips are both triangle

structure based on the skeleton structure of the human body. Thus,

given the distance between the waist and the hips l wh , the hips are

defined as follows: 

{ p m 

| p m 

∈ P ; D g (p waist , p m 

) = l wh ; (9)

D g (p head , p m 

) > D g (p head , p waist ) } 
{ p n | p n ∈ P ; D g (p waist , p n ) = l wh ;
D g (p head , p n ) > D g (p head , p waist ) } , (10)

where m � = n and p m 

, p n = arg max m,n (A (p m 

, p n )) . 

Here, we assume that the geodesic distance from head to any

shoulder is greater than that of the head to the neck, and the

geodesic distance from head to any hip is greater than that of the

head to the waist. The waist is defined as: 

p waist ∈ { p k | D g (p head , p k ) = l w 

; (11)

| D g (p Ls , p k ) − D g (p Rs , p k ) | < μ} , 
where l w 

is the given distance from the head to the waist, μ de-

notes the threshold of the difference between the geodesic dis-

tance from the left and the right shoulder to the waist. The skele-

ton model requires the waist to have a close distance to the left

and right shoulders. This ensures the scope of the waist is within

the torso instead of arms. Fig. 4 illustrates the process and con-

straints for estimating the positions of implicit joints. 

3.3.3. Detection of the dominant joints 

The dominant joints are elbows and knees. The data-driven

method is used to detect these joints because dominant joints usu-

ally cause a greater magnitude of deformation of the limbs in con-

trast to the implicit joints. In our method, a method that integrates

two detection strategies is developed to ensure accurate and stable

detection results. A global shortest path based strategy is employed

to detect candidates for the dominant joints, and a specific detec-

tion for each elbow and knee is employed. The detection results of

elbows and knees are averaged results from both the shortest path

based method and specific detection method. 

The global shortest path based method uses the distance map

similar to the distance maps used in Section 3.2.1 . The distance

map starts from the centroid point of the head, denoted as p ′ 
head 

,

and calculate the geodesic distance to all the other points in the

point cloud. The shortest paths from p ′ 
head 

to all extreme points

can be generated during the updating procedure of the distance

map. For each shortest path, given the start and end points of a

path, denoted with p i and p n , respectively, the joint candidates on

it should satisfy the following condition: 

p i , p j . . . p n = arg min 

i, j ... n 
(D g − D e ) , (12)

and 

D g = D g (p i , p j ) + . . . + D g (p n −1 , p n ) , 

D e = D e (p i , p j ) + . . . + D e (p n −1 , p n ) . 

The objective is to minimize the difference between the cumu-

lative Euclidean distance and the geodesic distance of the path. To
imit the number of joint candidates, the following restrictions are

nforced: 

 p i , A (p i ) < β and R g (p i ) > α, (13)

here A ( p i ) represents the Euler angle formed by p i and its two

djacent points p i −1 and p i +1 , and β and α are defined as thresh-

ld variables. The R g ( p i ) is the geodesic distance ratio on p i , defined

s: 

 g (p i ) = 

min (D g (p i −1 , p i ) , D g (p i , p i +1 )) 

D g ( p i −1 , p i ) + D g (p i , p i +1) ) 
. (14)

he restrictions ensure that the joint candidates show how curvy

he path is, and the points that close to the end points of the path

re not found as candidates. Because the sharper the angle is and

he greater the geodesic distance ratio is, the more contribution

f the corresponding joint candidate makes to bend the limb. An

xample of the shortest path from the head to the other extreme

oints is shown in Fig. 5 (a). 

The objective of the specific joint detection is to detect the pos-

ible joint positions for each limb. A local shortest path from the

orresponding extreme point to its closest implicit joint (e.g. shoul-

er or hip) is created. For example, the shortest path from the left

and to the left shoulder is created for detecting the position of

he left elbow. Given the start and end points p ′ start and p ′ 
end 

of

he shortest path on each limb, the detected joint must satisfy the

ollowing condition: 
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Fig. 5. Examples of the shortest paths. (a) the five shortest paths from head to all extreme points; (b) the shortest path from left shoulder to left hand; (c) the shortest path 

from right shoulder to right hand. Yellow dots in (a) are detected joints candidates. (b) and (c) are the shortest paths for specific detection. 

Table 1 

Detection Rate of Implicit Joints (%). 

Feature Points Neck Shoulder Hip 

left right left right 

Detection Rate 88.3 88.0 88.5 83.6 83.1 
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Table 2 

Detection Rate of Dominant Joints (%). 

Feature Waist Elbow Knee 

Points left right left right 

Detection Rate 86.7 90.1 89.3 89 90.2 

Table 3 

Overall Accuracy of Joints in terms of detection rate (%). 

Neck Waist Shoulder Elbow Hip Knee 

left right left right left right left right 

81.3 86.7 88.3 88 87.2 86.3 83.6 84.1 84 86 
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p k = arg min 

k 
(D e (p ′ start , p k ) + D e (p k , p 

′ 
end )) . 

A (p k ) < β and A (p k ) = ∠ p start p k p end . (15) 

his is to prevent random detection when the limb stretches

traight. The position of each dominant joint on limbs is the av-

rage position of the joint candidates on the corresponding limb

rom Eq. (12) and the detected joint from Eq. (15) . Furthermore,

hen a dominant joint cannot be detected, a geodesic middle

oint on the shortest path of the corresponding limb is used in-

tead. Examples of the shortest path for the specific detection are

hown in Fig. 5 . 

. Experiments and evaluation 

To evaluate our method, we record 10 videos with a Microsoft

inect camera. In the acquired videos, the resolution of each frame

s 512 × 424 pixels. The acquired videos contain various human

oses such as walking, kicking, turning the upper body, and jump-

ng. The reference points for joints are manually annotated in the

D point cloud. Examples of the detection are depicted in Fig. 6 ,

nd three different views are shown for each result to give a 3D

iew of the joints. 

.1. Detection rate 

Because the proposed method focuses on joint detection, it is

ecessary to evaluate the detection rate of joints. Table 1 lists the

verall detection rate of the implicit joints. 

Since the implicit joints are mostly estimated by the human

keleton model, the failure cases are mostly caused by the inac-

urate head detection. The detection rate of hips is slightly lower

han that of the shoulders because hands and other body parts oc-

luded the hips in some of the frames in the data set. Geodesic
eatures are used when estimating the implicit joints by the skele-

on model, the areas of the hip with the corresponding geodesic

istance value is not detectable when the areas are occluded by

ther body parts. 

The detection rate of the dominant joints is greater than that of

he implicit joints partly due to the shortest path based and spe-

ific detections. In Table 2 , we discuss the situations of the signif-

cant deformation occurring in the joints area. In practice, when

he Euler angle of a bent limb is greater than 145 °, it is considered

s significant deformation, which can be detected by the proposed

ethod. It is assumed that when a limb is fully stretched straight,

he Euler angle on the corresponding dominant joint is 180 °. 

.2. Accuracy of joint detection 

In our evaluation, if a joint is within 6 cm of the selected ref-

rence point, then the detection is considered correct. The overall

ccuracy of all joints are listed in Table 3 . 

In Table 3 , the accuracy of implicit joints (neck, waist, shoul-

ers, and hips) are close to their detection rate. Because in the pro-

osed method, the skeleton model finds the most suitable points

or shoulders and hips after the geodesic constraints are calcu-

ated. Comparing to fixed structure human body model, our model

an reduce the error distance for shoulders and hips. On the other

and, the overall accuracy of dominant joints is lower than their

etection rate. Because when an elbow or knee is not detectable, a

eodesic middle point is placed, and the middle points have bigger
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Fig. 6. Examples of detection results. The detected joints are marked with red cir- 

cles. Each result is displayed in three views: top view at the top, front view at the 

bottom left and side view at the bottom right. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Comparison between our previous work [28] (red shadow bars) and the pro- 

posed method (solid blue bars). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Comparison between the method in [15] (green shadow bars) and the pro- 

posed method (solid blue bars). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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error distances. A phenomenon that we realized from the exper-

iments is that the deformation of the cloth on the testing object

could affect the detection of shortest paths. Therefore, the defor-

mation of cloth could affect the accuracy of dominant joint detec-

tion. As a result, only major joints are detected and minor joints

such as ankles and wrists are left behind in the proposed method

to ensure the accuracy. 

We compare the proposed method against with our previous

work [28] , and the accuracy of elbows in the proposed method

is 17.8% higher than our previous work. However, we also real-

ize that the accuracy of shoulders is 5.4% lower. The Fig. 7 shows

the comparison of the accuracy of elbows and shoulders between

[28] and the proposed method. Because the method in [28] only

detects shoulders and elbows as the result of joint detection, only
he comparison data of elbow and shoulders are listed in Fig. 7 .

he major factor that causes the drop of accuracy on shoulders

s that a general skeleton model is used in the proposed method.

he accuracy of estimation of shoulders is affected by the detec-

ion of the head. In [28] a specific head-shoulder template is used

o detect the positions of head and shoulders. Comparing the two

ifferent type of models, head-shoulder template can detect head

ore accurately than the ellipse head model, but it also produces

arge error distance in some cases, especially when the testing ob-

ect give complex poses. 

We also run the method of [15] , which combines model-based

stimation and data-driven detection to extract human poses to

ompare with our method. Because in [15] only shoulders and el-

ows are detected, only the accuracy of shoulders and elbows are

isted in the Fig. 8 . The average accuracy of elbows and shoulders

f our method is 21.79% higher than the accuracy of [15] . In [15] ,

he positions of shoulders are estimated by calculating the average

osition of selected points with a certain distance to the head and

entroid of the torso, fixed searching range is defined for selecting

oints. In our method, an adaptive skeleton is applied, which im-

roves the accuracy of shoulder detection. When detecting elbows,

he shortest paths provide a better set of joint candidates, and the

hortest paths have fewer chances to be affected by the edges of

he clothes on human bodies. Comparing to [15] , the average accu-

acy of elbows in our method is 19.25% higher. 

.2.1. Error distance 

Error distance is calculated as the Euclidean distance between

etected points and reference points. On a small area on the sur-

ace of the human body, it is close to the geodesic distance. 

The average and the max error distance and listed in Table 4 .

he average error distance of waist and hips are higher than the

eck and shoulders, due to the cumulative error caused by the

odel. Furthermore, hips have no clear boundary on the human
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Table 4 

Error distance (in cm). 

Neck Sho. Elbows Waist Hips Knees 

Avg Err 4.2 4.1 3.3 5.2 5.5 4.2 

Max Err 6 6.1 6.8 7.4 8.8 6.7 

Fig. 9. Detection rate and accuracy of dominant joints using different threshold θ . 

Fig. 10. The average error distance of the detected joints using our proposed 

method (solid bars) and the Microsoft Kinect SDK (textured bars). 

Fig. 11. Average consistency of the detected joints using our proposed method 

(solid bars) and the Microsoft Kinect SDK (textured bars). 
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Fig. 12. Histograms of error distance. 

Table 5 

Accuracy (%) of detecting joints with different δ (mm). 

δ 15 25 35 45 

Acc. 15.21 77.17 65.21 87.67 

δ 55 65 75 85 

Acc. 67.93 65.21 58.69 59.29 
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ody, but shoulders have the clear boundary, which makes them

asier to find. Elbows and knees have smaller average error dis-

ance than the dominant joints, due to the mixture of two detec-

ion methods. The average and max error distances of the shoul-

ers of [15] are 5.7cm and 10.2cm, respectively, and for elbows,

he average and max error distances are 4.8cm and 10.1cm, respec-

ively. The max error distance in [15] is mainly caused by the de-

ormation of the edges of clothes. 

.2.2. Analysis of parameters 

In our analysis of parameters, 200 frames that contain 15 dif-

erent poses were used. In our proposed method, a threshold δ is

sed to verify if two adjacent points belong to the same surface.

able 5 lists the average accuracy of joint detection with different

values. It is clear that the system achieves the highest accuracy

87%) among all possible thresholds when δ is at 45 mm. When

 lower threshold is used, more points on the same body surface

re mistaken as points on the different body surface. On the other

and, as this threshold is increased, points on a different surface
re considered to be on the same surface, which, consequently, de-

rade the accuracy. The choice of threshold δ affects the procedure

f updating the distance map and, hence, it influences the accu-

acy of detecting both implicit and dominant joints. In the rest of

ur experiments, the threshold δ is 45 mm. 

Another threshold used in our method is θ for selecting can-

idates for dominant joints, which is the angle of the two vectors

ormed by three adjacent points. The three adjacent points are se-

ected by the geodesic distance ratio. In general, a small angle al-

ows a fewer number of candidates to be selected. We conducted

xperiments with different θ and evaluated the average accuracy

nd detection rate as shown in Fig. 9 . As θ increases, the detec-

ion rate increases, and best detection rate was achieved with θ
t 145 ° and 175 °. The accuracy, however, varies fluctuated with the

ncrement of θ . When θ was at 95 ° and 105 °, the accuracy reached

early 100%. This is due to the low detection rate. Within a few

uccessful detections, the joints were accurate. By considering both

etection rate and accuracy, we set θ to 145 ° in the rest of our ex-

eriments. 

.2.3. A comparison study with Microsoft Kinect SDK 

We conducted a comparison study with Microsoft Kinect SDK

ollowing the study in [29] and evaluated the accuracy and con-

istency of our proposed method. Fig. 10 illustrates the average

rror distance of the detected joints. The error distance is mea-

ured with respect to the ground truth marked manually on the

cquired data. It is shown that the average error distance of the

etection of joints using Microsoft Kinect SDK is 11.56cm; whereas

hat of our proposed method is 3.36cm. The largest errors in the

esults of SDK are related to waist and elbows, which are in the
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range of 16cm and above. Our proposed method demonstrated

much-reduced error distance. The error bars in Fig. 10 depict the

standard deviation (STD) and the average STDs for our proposed

method and the SDK are 1.36cm and 0.8cm, respectively. It is evi-

dent that the proposed method exhibited much-improved accuracy

in comparison to Microsoft Kinect SDK. 

We also evaluated the consistency of joint detection. The con-

sistency is gauged by the distance to the initial detection of each

joint. That is, the joint detection of a consistent method deviates

slightly, if any, regardless of the poses. Fig. 11 illustrates the bar

plot of consistency with respect to the ten joints. Our method ex-

hibited greater consistency for six joints and SDK achieved bet-

ter consistency for hips, waist, and left knee. The overall average

consistencies for our method and the SDK are 3.38cm and 3.8cm,

respectively. The error bars in Fig. 11 show the standard devia-

tions. The consistencies of the two methods are comparative with

a slight advantage to our method. 

Fig. 12 illustrates the histograms of error distance. The distribu-

tion of our method is condensed to the lower end and the distri-

bution of the SDK is scattered across the entire scale. The skew-

ness of our method is 1.575 and the skewness of the SDK is 1.091,

which indicates that the error distance distribution of our method

is statistically better than that of the SDK. 

5. Conclusions 

In this paper, we proposed a hybrid framework for accu-

rate joint detection for human pose estimation. In our proposed

method, joints are categorized into two classes including implicit

joints and dominant joints. Model-based and data-driven strategies

are used to estimate and detect the position of joints in the human

body. Both strategies take advantage of the geodesic features of the

human body to locate the joints accurately. Our experimental re-

sults demonstrated that an integrated method provides more sta-

ble and accurate results. Furthermore, the data-driven method that

uses global shortest path and local shortest path can be widely

used in different types of methods for human pose detection. The

geodesic distances between the extreme points and the joints can

be used for tracking and estimating the position of joints when the

joints are occluded. Complex and multi-layer self-occlusions could

cause failure of detection in our method. Our method failed to de-

tect the joints when the body parts and limbs are occluded. In our

future work, we plan to employ temporal information to improve

the detection accuracy and robustness. The geodesic distance be-

tween a joint and an extreme point is useful for tracking the joints.
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