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ABSTRACT

Human pose detection has been an active research topic, and many studies have been done to address
different problems in the topic. However, very few methods are proposed to detect joints in the human
body. In this paper, we proposed a novel hybrid framework to detect joints automatically by using depth
camera. In the proposed method, joints are categorized into two classes: implicit joints and dominant
joints. Implicit joints are the joints on the torso, such as neck and shoulders. Dominant joints include
elbows and knees. In the hybrid framework we proposed, a loose skeleton model is used to locate implicit
joints, and data-driven method is applied to detect dominant joints. The highlight of the proposed work
is that geodesic features of the human body are used to build the skeleton model and detect joints.
To evaluate our work, experiments are conducted on the dataset recorded by a Microsoft Kinect and
compared with state-of-art methods. The results demonstrate that the proposed work can deliver stable

and accurate detection results of joints.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Human pose detection and tracking have been widely used
in many applications, such as human-computer interaction, robot
control, 3D animation creation, and home entertainment. In such
video-based detection and tracking system, the feature point of
different body parts and joints such as head, elbows, and hands,
provides the information of poses and activities of people. Many
methods [1-4] have been proposed to tracking feature points from
RGB videos that can be used for human pose detection and track-
ing. When detecting human motions, joints provide accurate infor-
mation about the poses. Joint detection provides vital information
for characterizing human pose and serves as a foundation for a
wide range of computer vision applications such as physical train-
ing and pose analysis, healthcare, entertainment, etc [5-9]. For in-
stance, knowing the precise location of human joints enables es-
timation of poses and movements, which facilitates personalized
training for applications in rehabilitation and combat tactics in-
struction. Despite recent developments in markerless human track-
ing, few methods, to our best knowledge, have been proposed for
accurately detecting human joints. Models are usually used for
identifying joints in point cloud by matching a point cloud to a
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model and inheriting the pre-marked joints. However, the accu-
racy of the detected joints is suboptimal due to the misalignment,
which affects the precision of tracking human movements. Alter-
natively, methods that classify point cloud into body parts have
been proposed, which leverage a database of key poses and are ro-
bust to the deformation from clothes. Yet, the variety of key poses
greatly affects the performance. To overcome the aforementioned
problems, we proposed a method that integrates data-driven and
model-based strategies to improve the accuracy of joint detection.
Accurate detection of joints is critical for motion and activity anal-
ysis of a human and vital for delivering accurate results of detect-
ing and tracking human motions.

There are various methods proposed to detect feature points
(end points) from a different type of videos, e.g. infrared video and
depth video (time-of-flight video). Comparing with visual (RGB)
and infrared videos, depth video shows a great advantage, which
provides distance information that is important to overcome the
confusion of body parts and occlusions. Depth video is the pro-
jection of the point cloud captured by depth camera (such as Mi-
crosoft Kinect). Each point carries the distance between the target
and the camera. With the intrinsic parameters of the depth cam-
era, position in 3D space of each point in point cloud is acquired.
There are two major strategies for detecting human poses using
depth videos, model-based and data-based strategies. The idea of
model-based strategy is to fit a predefined 3D human model to
the point cloud acquired by the depth camera. Data based strategy
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Fig. 1. Overview of the workflow of the proposed method.

uses machine learning algorithm to classify points to body parts or
detect feature points using based on different features. However,
both strategies face challenges in accurate detection of the joints
of human body.

The objective of our work is to accurately detect joints on
the human body by combining body model and automatic feature
point detection. Fig. 1 represents the workflow of the proposed
framework. The human body model maps the detected extreme
points to the corresponding body parts on the model. The skeleton
model detects the position of implicit joints. The dominant joints
are detected after implicit joints and extreme points are located
by a shortest path based methods. The main contribution of this
work is a hybrid framework to detect joints on the human body to
achieve robustness to different body shapes or proportions, pose
variations and occlusions. Another contribution of this work is the
idea of using geodesic features of the human body to build a model
to guide the detection of human pose estimation.

The rest of this article is organized as follows: Section 2 reviews
the related work on human pose detection. Section 3 presents
the hybrid framework for detecting joints on the human body.
Section 4 discusses and compares the experimental results.
Section 5 concludes this paper with future work.

2. Related work

Markerless human body pose detection is an active research
area in computer vision [10] and many studies have been con-
ducted that employ optical and depth videos (see [11] and refer-
ences therein). Feature points detection, 3D human body model fit-
ting or alignment, and pixel classification are the most widely used
strategies. Methods that detect feature points usually use the sil-
houette of the human body as a graph and apply shortest distance
methods such as Dijkstra’s algorithm to locate feature points. The
detected feature points are used to represent poses of the human
body. Plagemann et al. [12] used Dijkstra’s algorithm to extract fea-
ture points from the human body and calculated the orientation of
each feature point by using backtracking method. Then, the author
applied a body part identification method to classify detected fea-

ture points to different body parts. It extracted the shape of the
area around each detected feature point and compared with shape
features of different body parts from the trained data set. However,
joints remained undetected in [12]. Baak et al. [13] applied a mod-
ified Dijkstra’s algorithm to detect feature points. In [13], the de-
tected feature points were used as query input to search possible
poses from the database. However, the feature points to this type
of method include no joints. Because Dijkstra’ algorithm is used to
locate the extreme points (end points of body parts).

Many methods [5,6,14-19] using human body model have been
developed to detect human poses. Zhang et al. [18] proposed an
approach based on the data-driven Markov Chain Monte Carlo
(DDMCMC) framework for human pose estimation. A three-level
tree structure was used as a human body model and the pose esti-
mation is formulated as a Bayesian inference problem. The tree-
structure state space was parsed into a lexicographic order and
searched by the DDMCMC technique. Cui et al. [19] integrated
low- and high-dimensional tracking approaches into a framework
using a probabilistic fusion formulation. The low-dimensional ap-
proach uses motion models, whereas the high-dimensional ap-
proach tracks movements by sampling the pose space. Zuffi
et al. [7] proposed a method that used realistic and part-based 3D
human models for human pose detection. The part-based 3D hu-
man model allows each body part in the model rotating and trans-
forming independently to fit the data. A cost function is defined
to calculate how smoothly two adjacent parts can be connected.
Ye et al. [8] used a set of pre-captured motion examples for ini-
tial pose estimation and the acquired data is matched to these ex-
amples for initial pose estimation and semantic labeling. Most of
the model-based methods define body parts only and use the in-
tersections of body parts as joints. Recently, Sigalas et al. [6] pro-
posed the top view re-projection method to align body model to
the point cloud of the human body. In [6], the author re-projected
the points inside the cylinder body part model to the top surface of
the cylinder. The ratio of the number of re-projected points to the
total number of points inside the cylinder model is computed as a
re-projection ratio. The best hypothesis position of a body model
is determined by selecting the minimum top view score (TVR)
which includes the re-projection ratio as the key factor, along with
other adjusting factors. The joints were defined on fixed positions
of each cylinder body part model. Handrich et al. [15] proposed a
hybrid method to detect human pose. In their work, geodesic dis-
tances were used to detect feature points of hands and elbows,
then individual models were applied to detect feature points of
head and shoulders. A skeleton model was applied to reject in-
correct detection results. Schwarz et al. [16] applied Dijkstra’s al-
gorithm to detect end points of limbs as primary feature points
and fit a skeleton model to the primary feature points. Joints were
defined by the skeleton model, and the positions of joints were es-
timated by the model fitting procedure. Shen et al. [20] adopted
a hierarchical method that identifies head and torso by template
fitting followed by detecting shoulders and hips. A multi-cue fu-
sion method is developed to fit a skeleton model, which extracts
2D cues from synchronized multiview images and integrated them
into a 3D representation. A volumetric reconstruction method was
implemented to merge relevant information into a coherent struc-
ture. Zhu et al. [5] proposed a template-based method to detect
body parts, where joints were defined as the intersections of two
connected body part templates. Ganapathi et al. [21] applied a
model based local optimizing method to match the human body
model to the point cloud, and a data-driven method to detect body
parts which were used to initialize the local optimizing method. It
is clear that model-based or model involved methods usually de-
fine their human models by defining the body parts and degrees
of freedom of corresponding parts, or kinematic relationship be-
tween connected body parts. However, these methods suffer from
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different body proportions, cumulative deviation of model fitting
and local maxima during the model fitting.

Similar to the model-based methods, most learning based
methods also focus on large body parts detection. Because compar-
ing to joints, body parts have a larger area of the human body. The
Larger area of the human body means more points on the point
cloud to learn and classify, therefore, results that are more accu-
rate can be generated. In learning based methods, joints are also
usually defined as the intersections of connected body parts. Wei
et al. [22] applied classification method in their system to detect
the initial pose and registered the human skeleton model to the
depth frame. After the skeleton model was initialized, a tracking
method was invoked to track 3D poses via a Maximum A Pos-
teriori (MAP) framework. The joints were defined by the skele-
ton model and initialized by the classification method at the be-
ginning. Shotton et al. [9] proposed two methods to estimate hu-
man poses, body part classification (BPC) and offset joint regres-
sion (OJR). Both methods estimated the positions of joints, and
cast votes for the position of joints. Buys et al. [23] used an un-
derlying kinematic model and a pixel classification method to ex-
tract the skeleton information from the depth frames. The kine-
matic model was used to constrain the extracted skeleton com-
ponents and generate the final skeleton. In learning based meth-
ods, body parts can be classified due to training procedure on
large scale of the dataset. However, the noisy or incomplete dataset
could cause incorrect classification results. The boundary of differ-
ent body parts sometimes can be ambiguous which can cause un-
stable or incorrect skeleton extraction results. Most recently, Nishi
and Miura [24] proposed a method to generate datasets of human
depth images with body part labels to enhance learning-based
pose recognition, which complements the existing datasets by pro-
viding many unusual poses such as lying and crouching. Twelve-
class labels were proposed, which include eleven body parts and
the background.

By reviewing the all three different strategies, methods that
lack accurate joint detection could suffer ambiguous, unstable or
even incorrect detection results. Accurate detection of joints re-
mains an open question. To overcome this issue, we proposed a
hybrid framework that combines human body model and geodesic
features of human body together to detect and estimate the posi-
tion of joints.

3. Method
3.1. Overview

The proposed method categorizes joints into two types, implicit
joints, and dominant joints. Implicit joints include the joints that
are close to the torso. In the proposed method, neck, left and right
shoulders, left and right hips and waist are defined as implicit
joints. Dominant joints include the joints on the limbs of a human
body. Left and right elbows and knees are categorized as dominant
joints. In practice, the dominant joints are easier to detect than the
implicit joins due to the rigidity of the bone segments of the limbs
of the human body. Implicit joints are difficult to detect. Because
implicit joints are part of the torso, and the deformation of these
joints are less significant than that of the dominant joints. On the
other hand, dominant joints carry more information about human
motion than the implicit joints. As the connections between torso
and limbs of the human body, it is still necessary to detect the po-
sition of the implicit joints.

The proposed method employs a skeleton model of human
body. Skeleton model defines the geodesic features of implicit
joints. Extreme points (feature points on the tip of body parts) are
detected and then mapped to the corresponding parts of the skele-
ton model. Implicit joints are found based on the skeleton model.

The global shortest paths from the head to other extreme points
are used to provide candidates for joints. Finally, a data-driven
method is applied to each limb, to detect possible dominant joints.
The dominant joints are determined by the voting the results of
possible joints from each limb and joint candidates on the global
shortest paths.

3.2. Extreme point detection and mapping

3.2.1. Extreme point detection

Extreme points on a human body include the head, hands, and
feet. As part of the feature points, the spatial distribution of ex-
treme points provides general information of human pose. Let P
denote the 3D point cloud of a human body. The 3D point cloud
is calculated from the captured depth frame. Starting from a ran-
domly selected point in the 3D point cloud, denoted as pg, the
geodesic distance between any other point to pg is defined as the
shortest geodesic distance to py. The geodesic distance between a
given point to pg is calculated as follow:

Dg(po. P(x,y)) = ZDg(P(pr/p)’ P(Xq.yq))- (1)

In the above equation, P(xp, yp) and P(xq, yq) are neighboring points
on the shortest path between P(x, y) and pg. Dg(-) represents the
geodesic distance between two points on the point cloud P. To cal-
culate the distances from each point on the point cloud to py, we
adopted an iterative method to go through the whole point cloud.
Start from pg, each point on the point cloud calculate the distance
between itself to its eight nearest neighbors. The shortest distance
from each of the eight neighbors to the py will be updated. For a
new point, its distance value is calculated; for a point that bears a
distance, the distance is updated when a shorter distance is found.
A distance map is generated by computing the distances to all
points in the point cloud, and a point with the longest distance
(i.e., an extreme point), denoted with Eq, is represented as follows:

Ey = argmax Dg(Eo, P(x,y)). (2)

To avoid the same extreme points being repeatedly found, when
an extreme point is identified, its geodesic distance to any exist-
ing extreme point is set to zero. Therefore, when a new extreme
point is found, it must have the longest geodesic distance to all
the existing points. Thus, five distance maps are usually required.
In the proposed method, the extreme points include head, hands,
and feet. Let M! denotes the distance map, where i is the distance
map index. The final updated distance map is as follows:

M(x,y) = min(M' (x,y), M*(x,y) ...M"(x,¥)). (3)
Furthermore, Eq. (2) is rewritten in a more general form:
E; = argmaxDg(E;_1, P(x,y)),i > 0. (4)

To handle the self-occlusion, we compute the difference of
the depth value between adjacent points when a distance map
is updated. If the difference is less than a threshold §, the two
points are considered as lying on the same surface of the hu-
man body; otherwise, they are considered as belonging to different
body parts. If the two points belong to different body parts, their
geodesic distance remains unchanged. Therefore, for a point in P,
its geodesic distance is only updated according to its neighboring
points on the same body part. Fig. 2 shows two examples of the
results of extreme point detection.

3.2.2. Extreme point mapping

When extreme points are detected, there is no correspondence
between extreme points and body parts on the skeleton model.
Without knowing the correspondence between extreme points and
the skeleton model, it is difficult to detect the positions of joints.
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(a) (b)

Fig. 2. Examples of extreme points. The red circles marked the position of the ex-
treme points. (a) shows the result without self-occlusion, (b) shows the result with
self-occlusion. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Thus, mapping the extreme points to the human body model en-
sures that the data-driven method works with the human body
model. The mapping method starts from mapping an extreme
point to the head. The shape feature of the area around each ex-
treme point is used to compare with an ellipse model of the head.
The area with the highest likelihood is used as a head. To map the
other extreme points to the human body model, the geodesic re-
lationship between hands and feet is used. In the skeleton model,
the geodesic distance between the head and the hands are shorter
than the geodesic distance between the head and the feet, that is

Dg(pheada Phand) < Dg(pheada pfoot)~ (5)

With the above constraints, the extreme points of feet and hands
are separated. To determine if an extreme point of hand corre-
sponds to the left or right hand, we assume that the geodesic dis-
tance between the left hand and the left shoulder is shorter than
the geodesic distance between the left hand and the right shoul-
der, and the same logic is applied to the right hand. The relation-
ship between the left and the right hands can be described as fol-
lows:

Dg(prh» jis) < Dg(Din» Jrs),
Dg(Pri» Jrs) < Dg(Dgns Jis) (6)

where p;; and pg, represent the extreme points of left and right
hands, respectively, p;; and pgs represent the estimated joints of
left and right shoulders, respectively. Estimating the position of
shoulders is presented in Section 3.3.2. The relationship between
the left and the right hands is also suitable for the left and the
right feet.

3.3. Joint detection

3.3.1. Skeleton model

As part of our hybrid framework, the skeleton model estimates
the positions of the implicit joints and provide constraints for data-
driven joint detection algorithm. The traditional model-based hu-
man pose detection methods [5,25-27] define the human body
model with a collection of body parts and DOFs (degrees of free-
dom) or joints with articulated structure and DOFs of joints. Our
method defines the human body model only by defining the over-
all structure and general geodesic features of the human body
model. For implicit joints, relative position and size are defined. On
the other hand, the only relative position is defined for each dom-
inant joint. Fig. 3 shows the skeleton model used in our method.

Fig. 3. The skeleton model used in our method. The green dots represent the ex-
treme points. Blue dots represent implicit joints (neck, waist, shoulders and hips).
Red dots represent dominant joints (elbows and knees). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

In this figure, there are three types of point, the green points rep-
resent the extreme points, the blue points represent the implicit
joint, and the red ones represent the dominant joints.

3.3.2. Estimation of the implicit joints

The implicit joints as part of the torso are more difficult to de-
tect than the dominant joints such as elbows. However, because
implicit joints locate within the torso, they have much-limited
DOFs than the dominant joints. As a result, the model-based es-
timation methods provide reliable results for estimating the po-
sition of implicit joints. When estimating the position of implicit
joints, we take full advantage of the geodesic features of the hu-
man skeleton to focus on the possible positions of joints. The es-
timation procedure follows a top-to-bottom order. The position of
the neck is estimated first based on the position of the head. Given
the length between neck and shoulder, denoted as I,s, the left and
right shoulders are defined as follows:

{pi | pi € P; Dg(Preck> Pi) = Ins; (7)
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Dg(pheacls pi) > Dg(phead’ Preci)}

{pj | Pje P; Dg(pneclu pj) = lys;

Dg(pheads pj) > Dg(pheudv pneck)}s (8)
where i#j and p;, p; = argmax; ;(A(p;, p;j))-

In the above definition, p; and p; are two points in P, A(-) is the
function to calculate the Euler angle between p; and p;. Eq. (9) en-
sures left and right shoulder are separated as much as possible.
The hips are defined in a similar way to the shoulders because
the structure of neck-shoulders and waist-hips are both triangle
structure based on the skeleton structure of the human body. Thus,
given the distance between the waist and the hips [, the hips are
defined as follows:

{Pm | Pm € P; Dg(pwaista Pm) = byps (9)

Dg(Phead> Pm) > Dg(Pheads Pwaist)}
{pn | pn P Dg(Pwaist» Pn) = Lk
D¢ (Phead> Pn) > Dg(Phead- Pwaist) }» (10)

where m#n and pm, pn = argmaxmn(A(Pm, Pn))-

Here, we assume that the geodesic distance from head to any
shoulder is greater than that of the head to the neck, and the
geodesic distance from head to any hip is greater than that of the
head to the waist. The waist is defined as:

Pwaist € {Dk | Dg(phead: Pi) = lw: (11)
[Dg(pis, Pr) — Dg(Prs. Pi)| < 1},

where [, is the given distance from the head to the waist, ;& de-
notes the threshold of the difference between the geodesic dis-
tance from the left and the right shoulder to the waist. The skele-
ton model requires the waist to have a close distance to the left
and right shoulders. This ensures the scope of the waist is within
the torso instead of arms. Fig. 4 illustrates the process and con-
straints for estimating the positions of implicit joints.

3.3.3. Detection of the dominant joints

The dominant joints are elbows and knees. The data-driven
method is used to detect these joints because dominant joints usu-
ally cause a greater magnitude of deformation of the limbs in con-
trast to the implicit joints. In our method, a method that integrates
two detection strategies is developed to ensure accurate and stable
detection results. A global shortest path based strategy is employed
to detect candidates for the dominant joints, and a specific detec-
tion for each elbow and knee is employed. The detection results of
elbows and knees are averaged results from both the shortest path
based method and specific detection method.

The global shortest path based method uses the distance map
similar to the distance maps used in Section 3.2.1. The distance
map starts from the centroid point of the head, denoted as p;md,
and calculate the geodesic distance to all the other points in the
point cloud. The shortest paths from p;lead to all extreme points
can be generated during the updating procedure of the distance
map. For each shortest path, given the start and end points of a
path, denoted with p; and pp, respectively, the joint candidates on
it should satisfy the following condition:

pi,p;..-pn=argp}ig(Dg—De), (12)
and

Dg = Dg(pi, pj) + ... + Dg(Pn_1, Pn).

De = De(pi, pj) + - - - + De(Pn1. Pn)-

The objective is to minimize the difference between the cumu-
lative Euclidean distance and the geodesic distance of the path. To

max angle

Fig. 4. Illustration of the constraints for estimating shoulders, waist, and hips.

limit the number of joint candidates, the following restrictions are
enforced:

Vpi, A(pi) < B and Rg(p)) > «, (13)

where A(p;) represents the Euler angle formed by p; and its two
adjacent points p;_; and p;,¢, and B and « are defined as thresh-
old variables. The Rg(p;) is the geodesic distance ratio on p;, defined
as:

min(Dg(pi_1, Pi), Dg(Pi. Pis1))

R ) =
s(P) Dg(pi_1. Pi) + Dg(pi. Piv1y)

(14)

The restrictions ensure that the joint candidates show how curvy
the path is, and the points that close to the end points of the path
are not found as candidates. Because the sharper the angle is and
the greater the geodesic distance ratio is, the more contribution
of the corresponding joint candidate makes to bend the limb. An
example of the shortest path from the head to the other extreme
points is shown in Fig. 5(a).

The objective of the specific joint detection is to detect the pos-
sible joint positions for each limb. A local shortest path from the
corresponding extreme point to its closest implicit joint (e.g. shoul-
der or hip) is created. For example, the shortest path from the left
hand to the left shoulder is created for detecting the position of
the left elbow. Given the start and end points py,., and p, , of
the shortest path on each limb, the detected joint must satisfy the
following condition:
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(a)

(b) (c)

Fig. 5. Examples of the shortest paths. (a) the five shortest paths from head to all extreme points; (b) the shortest path from left shoulder to left hand; (c) the shortest path
from right shoulder to right hand. Yellow dots in (a) are detected joints candidates. (b) and (c) are the shortest paths for specific detection.

Table 1
Detection Rate of Implicit Joints (%).
Feature Points Neck Shoulder Hip
left right left right
Detection Rate 88.3 88.0 88.5 83.6 831

Py = arg mkin(De(p;mrt’ Pr) + De(py, Pénd))-
A(py) < ﬂ and A(px) = ZPstart PkPend- (15)

This is to prevent random detection when the limb stretches
straight. The position of each dominant joint on limbs is the av-
erage position of the joint candidates on the corresponding limb
from Eq. (12) and the detected joint from Eq. (15). Furthermore,
when a dominant joint cannot be detected, a geodesic middle
point on the shortest path of the corresponding limb is used in-
stead. Examples of the shortest path for the specific detection are
shown in Fig. 5.

4. Experiments and evaluation

To evaluate our method, we record 10 videos with a Microsoft
Kinect camera. In the acquired videos, the resolution of each frame
is 512 x 424 pixels. The acquired videos contain various human
poses such as walking, kicking, turning the upper body, and jump-
ing. The reference points for joints are manually annotated in the
3D point cloud. Examples of the detection are depicted in Fig. 6,
and three different views are shown for each result to give a 3D
view of the joints.

4.1. Detection rate

Because the proposed method focuses on joint detection, it is
necessary to evaluate the detection rate of joints. Table 1 lists the
overall detection rate of the implicit joints.

Since the implicit joints are mostly estimated by the human
skeleton model, the failure cases are mostly caused by the inac-
curate head detection. The detection rate of hips is slightly lower
than that of the shoulders because hands and other body parts oc-
cluded the hips in some of the frames in the data set. Geodesic

Table 2
Detection Rate of Dominant Joints (%).
Feature Waist Elbow Knee
Points left right left right
Detection Rate 86.7 90.1 89.3 89 90.2
Table 3
Overall Accuracy of Joints in terms of detection rate (%).
Neck  Waist  Shoulder Elbow Hip Knee

left right left  right left right left right

81.3 86.7 883 88 872 863 836 841 84 86

features are used when estimating the implicit joints by the skele-
ton model, the areas of the hip with the corresponding geodesic
distance value is not detectable when the areas are occluded by
other body parts.

The detection rate of the dominant joints is greater than that of
the implicit joints partly due to the shortest path based and spe-
cific detections. In Table 2, we discuss the situations of the signif-
icant deformation occurring in the joints area. In practice, when
the Euler angle of a bent limb is greater than 145°, it is considered
as significant deformation, which can be detected by the proposed
method. It is assumed that when a limb is fully stretched straight,
the Euler angle on the corresponding dominant joint is 180°.

4.2. Accuracy of joint detection

In our evaluation, if a joint is within 6 cm of the selected ref-
erence point, then the detection is considered correct. The overall
accuracy of all joints are listed in Table 3.

In Table 3, the accuracy of implicit joints (neck, waist, shoul-
ders, and hips) are close to their detection rate. Because in the pro-
posed method, the skeleton model finds the most suitable points
for shoulders and hips after the geodesic constraints are calcu-
lated. Comparing to fixed structure human body model, our model
can reduce the error distance for shoulders and hips. On the other
hand, the overall accuracy of dominant joints is lower than their
detection rate. Because when an elbow or knee is not detectable, a
geodesic middle point is placed, and the middle points have bigger
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Fig. 6. Examples of detection results. The detected joints are marked with red cir-
cles. Each result is displayed in three views: top view at the top, front view at the
bottom left and side view at the bottom right. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

error distances. A phenomenon that we realized from the exper-
iments is that the deformation of the cloth on the testing object
could affect the detection of shortest paths. Therefore, the defor-
mation of cloth could affect the accuracy of dominant joint detec-
tion. As a result, only major joints are detected and minor joints
such as ankles and wrists are left behind in the proposed method
to ensure the accuracy.

We compare the proposed method against with our previous
work [28], and the accuracy of elbows in the proposed method
is 17.8% higher than our previous work. However, we also real-
ize that the accuracy of shoulders is 5.4% lower. The Fig. 7 shows
the comparison of the accuracy of elbows and shoulders between
[28] and the proposed method. Because the method in [28] only
detects shoulders and elbows as the result of joint detection, only
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Fig. 7. Comparison between our previous work [28] (red shadow bars) and the pro-
posed method (solid blue bars). (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Comparison between the method in [15] (green shadow bars) and the pro-
posed method (solid blue bars). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

the comparison data of elbow and shoulders are listed in Fig. 7.
The major factor that causes the drop of accuracy on shoulders
is that a general skeleton model is used in the proposed method.
The accuracy of estimation of shoulders is affected by the detec-
tion of the head. In [28] a specific head-shoulder template is used
to detect the positions of head and shoulders. Comparing the two
different type of models, head-shoulder template can detect head
more accurately than the ellipse head model, but it also produces
large error distance in some cases, especially when the testing ob-
ject give complex poses.

We also run the method of [15], which combines model-based
estimation and data-driven detection to extract human poses to
compare with our method. Because in [15] only shoulders and el-
bows are detected, only the accuracy of shoulders and elbows are
listed in the Fig. 8. The average accuracy of elbows and shoulders
of our method is 21.79% higher than the accuracy of [15]. In [15],
the positions of shoulders are estimated by calculating the average
position of selected points with a certain distance to the head and
centroid of the torso, fixed searching range is defined for selecting
points. In our method, an adaptive skeleton is applied, which im-
proves the accuracy of shoulder detection. When detecting elbows,
the shortest paths provide a better set of joint candidates, and the
shortest paths have fewer chances to be affected by the edges of
the clothes on human bodies. Comparing to [15], the average accu-
racy of elbows in our method is 19.25% higher.

4.2.1. Error distance

Error distance is calculated as the Euclidean distance between
detected points and reference points. On a small area on the sur-
face of the human body, it is close to the geodesic distance.

The average and the max error distance and listed in Table 4.
The average error distance of waist and hips are higher than the
neck and shoulders, due to the cumulative error caused by the
model. Furthermore, hips have no clear boundary on the human
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Table 4
Error distance (in cm).

Neck  Sho. Elbows  Waist Hips Knees
Avg Err 4.2 41 33 52 5.5 4.2
Max Err 6 6.1 6.8 74 8.8 6.7
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Fig. 9. Detection rate and accuracy of dominant joints using different threshold 6.

0.2
M Proposed Method

E 016 Kinect SDK
§ 0.12
8
\
Pal 0.08
5
£ 0.04
w

]

Neck  Right Left Right Left Waist  Right Left Right Left
Shoulder Shoulder  Hip Hip Elbow Elbow Knee Knee

Fig. 10. The average error distance of the detected joints using our proposed
method (solid bars) and the Microsoft Kinect SDK (textured bars).
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Fig. 11. Average consistency of the detected joints using our proposed method
(solid bars) and the Microsoft Kinect SDK (textured bars).

body, but shoulders have the clear boundary, which makes them
easier to find. Elbows and knees have smaller average error dis-
tance than the dominant joints, due to the mixture of two detec-
tion methods. The average and max error distances of the shoul-
ders of [15] are 5.7cm and 10.2cm, respectively, and for elbows,
the average and max error distances are 4.8cm and 10.1cm, respec-
tively. The max error distance in [15] is mainly caused by the de-
formation of the edges of clothes.

4.2.2. Analysis of parameters

In our analysis of parameters, 200 frames that contain 15 dif-
ferent poses were used. In our proposed method, a threshold § is
used to verify if two adjacent points belong to the same surface.
Table 5 lists the average accuracy of joint detection with different
8 values. It is clear that the system achieves the highest accuracy
(87%) among all possible thresholds when & is at 45 mm. When
a lower threshold is used, more points on the same body surface
are mistaken as points on the different body surface. On the other
hand, as this threshold is increased, points on a different surface
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Fig. 12. Histograms of error distance.

Table 5

Accuracy (%) of detecting joints with different § (mm).
8 15 25 35 45
Acc. 15.21 7717 65.21 87.67
8 55 65 75 85
Acc. 67.93 65.21 58.69 59.29

are considered to be on the same surface, which, consequently, de-
grade the accuracy. The choice of threshold § affects the procedure
of updating the distance map and, hence, it influences the accu-
racy of detecting both implicit and dominant joints. In the rest of
our experiments, the threshold § is 45 mm.

Another threshold used in our method is 6 for selecting can-
didates for dominant joints, which is the angle of the two vectors
formed by three adjacent points. The three adjacent points are se-
lected by the geodesic distance ratio. In general, a small angle al-
lows a fewer number of candidates to be selected. We conducted
experiments with different 6 and evaluated the average accuracy
and detection rate as shown in Fig. 9. As € increases, the detec-
tion rate increases, and best detection rate was achieved with 6
at 145° and 175°. The accuracy, however, varies fluctuated with the
increment of 6. When 6 was at 95° and 105°, the accuracy reached
nearly 100%. This is due to the low detection rate. Within a few
successful detections, the joints were accurate. By considering both
detection rate and accuracy, we set 6 to 145° in the rest of our ex-
periments.

4.2.3. A comparison study with Microsoft Kinect SDK

We conducted a comparison study with Microsoft Kinect SDK
following the study in [29] and evaluated the accuracy and con-
sistency of our proposed method. Fig. 10 illustrates the average
error distance of the detected joints. The error distance is mea-
sured with respect to the ground truth marked manually on the
acquired data. It is shown that the average error distance of the
detection of joints using Microsoft Kinect SDK is 11.56cm; whereas
that of our proposed method is 3.36cm. The largest errors in the
results of SDK are related to waist and elbows, which are in the
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range of 16cm and above. Our proposed method demonstrated
much-reduced error distance. The error bars in Fig. 10 depict the
standard deviation (STD) and the average STDs for our proposed
method and the SDK are 1.36cm and 0.8cm, respectively. It is evi-
dent that the proposed method exhibited much-improved accuracy
in comparison to Microsoft Kinect SDK.

We also evaluated the consistency of joint detection. The con-
sistency is gauged by the distance to the initial detection of each
joint. That is, the joint detection of a consistent method deviates
slightly, if any, regardless of the poses. Fig. 11 illustrates the bar
plot of consistency with respect to the ten joints. Our method ex-
hibited greater consistency for six joints and SDK achieved bet-
ter consistency for hips, waist, and left knee. The overall average
consistencies for our method and the SDK are 3.38cm and 3.8cm,
respectively. The error bars in Fig. 11 show the standard devia-
tions. The consistencies of the two methods are comparative with
a slight advantage to our method.

Fig. 12 illustrates the histograms of error distance. The distribu-
tion of our method is condensed to the lower end and the distri-
bution of the SDK is scattered across the entire scale. The skew-
ness of our method is 1.575 and the skewness of the SDK is 1.091,
which indicates that the error distance distribution of our method
is statistically better than that of the SDK.

5. Conclusions

In this paper, we proposed a hybrid framework for accu-
rate joint detection for human pose estimation. In our proposed
method, joints are categorized into two classes including implicit
joints and dominant joints. Model-based and data-driven strategies
are used to estimate and detect the position of joints in the human
body. Both strategies take advantage of the geodesic features of the
human body to locate the joints accurately. Our experimental re-
sults demonstrated that an integrated method provides more sta-
ble and accurate results. Furthermore, the data-driven method that
uses global shortest path and local shortest path can be widely
used in different types of methods for human pose detection. The
geodesic distances between the extreme points and the joints can
be used for tracking and estimating the position of joints when the
joints are occluded. Complex and multi-layer self-occlusions could
cause failure of detection in our method. Our method failed to de-
tect the joints when the body parts and limbs are occluded. In our
future work, we plan to employ temporal information to improve
the detection accuracy and robustness. The geodesic distance be-
tween a joint and an extreme point is useful for tracking the joints.
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