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Abstract 

Trie is fundamental to many applications, such as natural language processing, string similarity search and join, but it suffers from a high 

space overhead. Double array (DA) provides a new way to reduce the space overhead but suffers from low construction efficiency. There 

is an urgent demand to promote the construction efficiency of DA while maintaining a low memory overhead. To address this problem, 

we reveal that the collisions generated during DA construction process mainly contribute to the low construction efficiency. Based on this 

analysis, a partition double array (PDA) is proposed in this paper. PDA can reduce the number of collisions as well as the cost of handling 

collisions in DA, so higher construction efficiency is guaranteed. Experiments on real dataset indicates that PDAs have a construction 

efficiency 15x higher than DA. We also obtain a bonus 2.7x higher retrieval efficiency compared with DA. 
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1. Introduction 

 

Trie, originally proposed by Edward Fredkin [6], is an ordered structure with characters stored on the edges. Trie is widely 

used in many fields such as natural language processing [4,11], bibliographic search [1], language model implementation 

[15] , IP routing address lookup [8,12] , string or set similarity query and join [5,9,13] and so on. There are two common 

forms to express a trie [3]: the matrix form and the list form. The matrix form has faster retrieval efficiency but with a 

higher space overhead while the list form is contrary to the former. 

 

In most cases, constructing a trie is memory consuming, especially when the dataset is sparse. To solve this problem, an 

efficient trie called Double Array (DA) [2]  is proposed. DA uses two integer arrays named BASE and CHECK to compress 

a trie so it has a much smaller memory overhead. Retrieving a string on DA is also very fast since it only involves two 

operations: the access and the addition. 

 

DA has the merits of both fast access speed of the matrix form and high compression ratio of the list form, so it has 

been widely used. However, it also suffers from some drawbacks such as inefficient construction efficiency and empty 

elements. 

 

At present, many works have been carried out on DA and most of them try to further compress DA to make it more 

succinct. Wang et al. [16]  proposed a heuristic optimization strategy that processes trie nodes with more children first. This 

strategy can improve space usage to a certain extent, but the comparison between different branches introduces additional 

overheads, thus reducing the construction efficiency of DA. Yata et al. [17] proposed compacted double array (CDA) which 

keeps characters rather than integers in CHECK, thus achieving a higher compression ratio. But, it also needs additional 

overheads to satisfy the uniqueness of the BASE value. Fuketa et al. [7] researched single array with multi code (SAMC) 
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which removes BASE array and turns DA into a single array, but it is only efficient for fixed length strings. Kanda et al. 

[10]  presented double array using linear functions (DALF), which uses less bits to express an element in BASE but needs to 

be reconstructed when BASE value is far away from the corresponding linear function. 

 

 These aforementioned structures mainly focus on space usage, thus construction overhead is omitted. Moreover, most 

of these approaches are mainly static double arrays, which means they do not support dynamic update, which is commonly 

needed in many circumstances. From our standpoint, however, construction efficiency has great importance for many join 

based applications, such as trie-join [5], because in these applications the construction process is always included in the total 

elapsed time. Niu et al. [14]  try to speed up this process, but finally get limited achievements. Experiments mentioned in 

this paper (described in section 4.2) show that the DA construction time increases dramatically with the increase of the 

number of strings. It urgently calls for a DA structure with a high construction efficiency. 

 

In this paper, we check the construction process of DA in detail. After that, we reveal the collisions generated during 

construction process mainly contribute to the low construction efficiency. On the basis of collision analysis, we propose a 

simple but rather effective partition double array (PDA) structure, which greatly reduces the number of collisions as well as 

the cost of handling collisions in DA, thus improving the construction efficiency. What's more, the retrieval efficiency also 

improved a great deal compared with DA. 

 

2. Trie and double array  

 

Trie, also noted as the word search tree, is a tree of shared prefixes. In a trie, each path from the root node to the leaf node 

represents a string stored in it. Figure 1 shows the trie of a string set S = {"abc#", "abhgc#", "abas#", "eak#"}. In order to 

distinguish two strings like "the" and "then", a special character '#' is added at the end of each string. Trie can be viewed as a 

finite state machine, where each node represents a state and an edge from a node to one of its child node represents a state 

transition. 
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 Figure 1. A trie for S 

 

Commonly, a trie needs to store a large number of strings, which requires a large storage overhead. To alleviate this, 

DA was proposed which consists of 2 one-dimensional equal-length arrays named BASE and CHECK. DA only needs to 

store a reduced trie [3], which contains the prefix of each string that can be distinguished from all other strings. Another 

character array named TAIL is used to store the suffix of each string. BASE stores the state value, and CHECK stores the 

checksum that is used to check the status of state transition. In DA, a character c from state x to state y must satisfy Equation 

(1) and Equation (2): 

 

[ ] [ ]BASE x CODE c y   (1) 

[ ]CHECK y x  (2) 

 

where CODE[c] represents the numerical code of the character c. 

 

BASE[i] and CHECK[i] all equaling to 0 indicates the i-th position is unused, whereas a negative BASE value indicates 

the position of the string suffix in TAIL. A reduced trie and its corresponding DA for S are shown in Figure 2. Note that the 

node number on a reduced trie equals to its position in DA. We use both the node number and the position interchangeably 

in this paper when there is no ambiguity. If there is a character c representing a transition from node x to node y on a 



 Collision Analysis and an Efficient Double Array Construction Method 649 

reduced trie, the position x in DA is called the parent position of y, position y is called a child position of x, and c is the 

transition character from x to y. All transition characters starting from x is denoted by xO  and all transition characters 

ending at y is denoted by yI . 

1 4 10

3

7

5

11

a b

c

h

a
e

5 0 -7 1 -1 0 1 0 0 -4 -8

0 0 4 7 4 0 1 0 0 4 1

1 2 3 4 5 6 7 8 9 10 11

BASE

CHECK

# ? ? g c # s # a k #TAIL  
Figure 2. The reduced trie and DA for K 

 

3. Partition double array 

 

3.1. Collision analysis of DA 

 

When inserting a string into DA, collisions may occur, thus degrading the construction efficiency. The main reason of 

collisions lies in that two transitions may reach a same position in DA. We name this collision as position competition 

collision (PCC). There are two possible circumstances resulting in a PCC as Equation (3) and Equation (4) show. 

 

[ ] [ ] [ '] [ ] for 'BASE x CODE c BASE x CODE c x x     (3) 

[ ] [ ] [ '] [ '] for ' 'BASE x CODE c BASE x CODE c x x c c       (4) 

 

Equation (3) indicates two different nodes, x and x’. The two may have the same BASE value, so when they met with 

the same transition character, a PCC occurs. Equation (4) indicates that even x and x' have different BASE values, when 

they met with different transition characters, a PCC may also occur. Figure 3 and Figure 4 give two examples of these two 

circumstances respectively. 
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Figure 3. DA before and after inserting "abas#" 

 

Example 1. In Figure 3, when inserting "abas#" into DA, the third character 'a' corresponds to a state transition from 

position 4 to position 3, but the state transition from position 1 to position 3 corresponding to the first character 'a' of "abc#" 

already exists in DA. So, position 1 and position 4 compete for position 3, resulting in a PCC. 

 

Example 2. In Figure 4, when inserting "eak#" into DA, the first character 'e' corresponds to a state transition from 

position 1 to position 10, but the state transition from position 4 to position 10 corresponding to the third character 'h' of 

"abhgc#" already exists in DA. So, position 1 and position 4 compete for position 10, resulting in a PCC. 
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Figure 4. DA before and after inserting "eak#" 

 

When a PCC appears, the following operations should be performed to tackle this problem: 1) select the position p with 

fewer children as the position to be sacrificed 2) execute X_CHECK function for p to reselect a new BASE value q. The 

possible values are incrementally probed from current BASE value (the initial value is 1) and until we find a minimum q 

satisfying CHECK [q + CODE[c]] = 0 for all pc O . For ease of expression, q is also called the probe length in this paper 3) 

move the BASE and CHECK values for each child position p’ of p to its new position q +CODE[c] where c is the transition 

character from p to p’. 
 

Example 3. In Figure 3, when resolving PCC caused by inserting " abas #" into DA, the position 1 is sacrificed (only 1 

child position 3); perform X_CHECK function and we get q= 4 (q+CODE['a']=4+2=6 and position 6 is unused). Position 6 

is the new available position. Then, we move the BASE and CHECK values of position 3 to position 6. Here, we need 4 

probes  and 1 movement. Similarly, we need additional 1 probe (BASE[1] from 4 to 5) and 1 movement (from position 6 to 

7) when inserting "eak#" into DA. There are 2 PCCs in total. 
 

It can be seen from the above analysis that when a PCC occurs, a large amount of probes are needed for executing 

X_CHECK function, and the probe length increases sharply with the increase in the number of strings. Moreover, handling 

PCC needs a large number of data movements, thus deteriorating the construction efficiency. 
 

3.2. The design of partition double array  
 

It can be seen from the above analysis that DA generates a large number of collisions and costs during index construction. 

As the amount of strings increases, the number of collisions goes up rapidly so we need to find new and efficient measures 

to address this issue. 
 

3.2.1. Motivation 
 

Based on collision analysis mentioned above, we have the following observation. 
 

Observation: Dividing a string set into multiple partitions reduces the number of collisions and the costs of handling. 
 

Example 4. Assume the string set S = {"abc#", "abhgc#", "abas#", "eak#"} is divided into S1 = {"abc#", "abhgc#", 

"abas#"} and S2 = {"eak#"} and for each partition DA is created as Figure 5 shows. Inserting "eak#" into the second 

partition does not cause any collisions, let alone the cost to handle the collisions. 
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Based on the observation above, partition can reduce collisions because the collisions are constrained within their 

partition. Besides, the costs of handling collisions can also be reduced since we use much shorter arrays. So, the 

construction efficiency can be boosted. 

 

3.2.2. Partition strategy 

 

To partition strings, a good partition strategy is of prime importance. When designing a partition strategy, two principles 

should be considered: 1) Intuitively, for a string set S and a given partition number k, if S is evenly divided into k partitions, 

it will have the lowest collision probability. 2) Strings containing public prefixes should be grouped into the same partition 

to minimize the space overhead. 

 

Based on the aforementioned principles, a balanced partition strategy considering the common prefixes is proposed. 

Given partition number k, the strategy is implemented as follows:  

1) Determine k-1 division lines to divide the dataset equally into k partitions. 

2) Adjust the division lines according to the common prefix. If some strings having common prefixes (for example, 

strings with the first letter 'b') is divided into two different partitions by a certain division line, the division line is moved to 

the nearest edge.  

 

These strategies allow each partition to be as balanced as possible, and strings with a common prefix are always in the 

same partition. For ease of description and implementation, in this paper, only initial letters are considered to split strings 

and extend to a much larger partition parameter k to support large scale parallel. A sketch map dividing a string set into 5 

partitions is shown in Figure 6. 

 

a-e f g-j k u-zl-p q r-s t

        Balanced division line   Final division line
 

Figure 6. The partition strategy 

 

3.2.3. Partition mapping 

 

After the partition strategy is designed, the partition to be inserted for each string should be determined. To do this, an 

efficient partition map table (PMT) is designed in which a partition entry is created for each independent character. The 

designed PMT is efficient since the subscript of an initial character in PMT can be computed directly. Both the construction 

and retrieval process can benefit a lot from PMT. The PMT and the final PDA are shown in Figure 7. 
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Figure 7. PDA structure 

 

3.2.4.  Construction algorithm 

 

Based on the discussions above, a simple but rather efficient partition double array (PDA) is constructed. PDA divides the 

strings into multiple partitions and then constructs DA independently for each partition. By partitioning, the collision can be 

limited within the partition, so the number of collisions and the cost of handling collisions can be greatly reduced. 
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Based on the discussions above, the construction algorithm of PDA is given in Algorithm 1. 

PDA Construction Algorithm

ConstructPDA(S，k)

//Input：S, a string set

               k，numbers of partitions

//Output：a PDA index

1.  S1,S2,…,Sk← divide R into k relative even subsets using 

our partition strategy

2.  create a PMT for S

3.  for each subsets Si

4.       DA(Si)

5.       add pointers in corresponding entries of PMT to 

point to the i-th partition

 
Algorithm 1. PDA construction algorithm 

 

The algorithm divides S into k subsets according to the partition strategy proposed in this paper, and then creates a PMT 

for S. For each subset, we create a DA using traditional DA construction algorithm that sets the mapping between the 

created partition and PMT. 

 

3.2.5. Retrieval algorithm 

 

Retrieving on PDA is rather intuitive and efficient. Given a string s, we obtain its partition by retrieving its initial letter in 

PMT, and then execute the traditional DA retrieval algorithm in this partition. The retrieval algorithm of PDA is shown in 

Algorithm 2. 

PDA Retrieval  Algorithm

RetrievalPDA(s)

//Input：s,  a query string

//Output：f , a flag  denoting whether s is indexed 

1.  c←the initial character of s

2.  p←get the partition of c using PMT 

3. f ←DA(p,s)

 
Algorithm 2. Query algorithm based on PDA 

 

Note that DA can be viewed as a special case of PDA with k = 1. More importantly, although PDA contains multiple 

DAs, it does not lead to an apparent increase in space usage compared with DA because when |S| is large, PDA do not 

generate too much empty elements than DA. The following experiments help illustrate this point. So, PDA can greatly 

improve the construction efficiency and retrieval efficiency under the premise of not significantly increasing the space 

overhead.  

 

4. Experiment evaluation 

 

To evaluate the performance of PDA, we have performed extensive experiments on real dataset to look into and compare 

with other competitors. All the experiments were run on a windows 10 64-bit machine with an Intel (R) Core 4 i5-6500 

CPU @ 3.20GHz processor and 8GB memory. The algorithms were implemented in Microsoft Visual Studio C++ 2010. 

 

The dataset used here is DBLP1  and we extract 183361 unique strings of title field in DBLP. The minimum string 

length is 1, the maximum length is 49 and the average length is 8.6. We create PDA using this dataset and also use it as 

queries to examine the construction and retrieval efficiency. 

 

4.1. Impact on partition number 

 

Firstly, the impact of partition number on PDA construction efficiency is researched. We set partition number k to be 1, 5, 

10, 15 and 20, respectively to examine their construction times. The result is shown in Figure 8. It can be observed from 

                                                           
1 http://www.informatik.uni-trier.de/～ley/db/ 
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Figure 8 that the construction time is significantly reduced as the number of partitions increases. In extreme cases, PDA 

with k=1 takes about 105s, whereas the time is only 6.7s for k = 20, 15 times faster than the former. The curve tends to be 

smooth when k=10. In the experiments below, when not pointed out explicitly, we use k = 10 as the default setting. 

 

As previously analyzed, the higher efficiency with a larger k lies in that the total number of collisions (sum of collisions 

of all partitions) and the total probe length (sum of all probe lengths) are reduced with the increase of the number of 

partitions, which undoubtedly boosts efficiency. The total number of collisions and the total probe length are shown in 

Figure 9 and Figure 10, respectively.  
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Figure 8. Construction time                                                                        Figure 9. Number of Collisions 

   

Then, the impact on space usage for different k is evaluated. For each DA of PDA, the space usage is calculated based 

on Equation (5). 

 

(| | | |)* (int) | |BASE CHECK sizeof TAIL   (5) 

 

where sizeof (int) represents the number of bytes in an integer. For PDA, we accumulate the space usage of all DAs and 

report the results in Figure 11. As can be seen from Figure 11, as the number of partitions increases, there is no obvious 

increase in space usage for PDA, which is consistent with the above analysis. 

 

Finally, the impact of partition number on retrieval time of PDA is analyzed and the results are shown in Figure 12. As 

the number of partitions increases, the retrieval time shows a descending trend. The retrieval time for 20 partitions is about 

2.7 times higher than the 1 partition counterpart. The main reason may lie in that PDA uses much smaller arrays, and thus 

benefits the cache hit ratio. 
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Figure 10. Total probe length                                                     Figure 11. Space usage for different number of partitions 

 

4.2. Comparison of different algorithms 

 

We compare PDA with the other two competitors, DA and CDA, from construction times, retrieval times and space usages 

to verify the efficiency of the PDA. In the following experiments, we select the first 50,000, 100,000, 150,000 and all 

strings in DBLP respectively and then construct its corresponding PDA. The partition parameter k used here is 10. 
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The comparison of construction times is shown in Figure 13, which shows that PDA is much faster than the other 2 

structures. More importantly, with the increase of string number, the advantage of PDA is much more obvious which turns 

out PDA is more suitable to be used in large datasets. 
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Figure 12. Retrieval times for different number of partitions                   Figure 13. Construction times for the 3 structures 

 

The retrieval times for the 3 structures are shown in Figure 14. PDA is also the most efficient among them. The 

retrieval time of CDA has no great differences with DA since CDA does not change the retrieval algorithm of DA. 
 

The space usages for the 3 structures are shown in Figure 15. As described before, the space usage of PDA is 

comparable to DA. CDA has the least space usage since it uses unique BASE value for each position. As a result, it can use 

characters (smaller than integer) to represent CHECK values.  

 

5. Conclusions 

 

DA is a succinct string index and can be used in many fields, but suffers from low construction efficiency. This paper 

reveals that it is the collision that degrades the construction efficiency. In view of this, PDA is proposed. PDA can 

effectively reduce the number of collisions and the cost of handling collisions, thus greatly improving the construction and 

retrieval efficiency while maintaining a small space overhead. Next, we will try to decrease the space usage of PDA by 

developing some compression methods suiting for dynamic double array. 
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