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Abstract
The identification and analysis of functional modules in protein–protein interaction (PPI) networks provide insight into

understanding the organization and function of biological systems. A lot of overlapping structures are shared by the

functional modules in PPI networks, which indicates there are some proteins play indispensable roles in different biological

processes. Markov clustering (MCL) is a popular algorithm for clustering networks in bioinformatics. In this paper, to

identify the overlapping structures among the functional modules and find more modules with biological significance in

PPI networks, we propose a Markov clustering algorithm based on link similarity (MLS). First of all, the weighted link

similarity is calculated and the link similarity matrix which measures the association strength of the protein interactions can

be gotten. Then, the link similarity matrix is divided by applying Markov clustering, and the clustering results are mapped

to original networks to analyze the protein modules. The method has been experimented on three databases, including DIP,

Gavin and Krogan. Our results show that the MLS cannot only accurately identify the functional modules, but also

outperform the original MCL algorithm and the F-measure value improved 5–10% compared with it.
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1 Introduction

PPI networks, as one of the major research fields of

bioinformatics, have gradually become a focus recently. At

present, how to effectively and accurately identify the

protein complexes and the functional modules is the main

direction of PPI networks. Modules reflect biological sig-

nificance, within which the protein connections are always

denser than those among other modules, but between which

they are sparser. Therefore, the acquisition and analysis of

module structures is the key to identifying protein com-

plexes and functional modules in a PPI network. We can

detect biological protein families based on graph theory.

Traditional clustering algorithms of PPI networks can be

classified into the density-based method, hierarchical

clustering method, partition-based method and flow simu-

lation method, etc. MCODE method, as one of the density-

based methods, was proposed by Bader et al. [1], could

effectively detect substructures with high density, but lose

much nodes information in a graph with less relevance.

Although the algorithm based on hierarchical clustering,

such as the GN algorithm [2], can reliably and sensitively

extract community structure from artificially generated

networks, it discards some functional modules with over-

lapping structures because of its results showed in form of

the dendrogram. The partition-based method, such as the

RNSC algorithm, which was proposed by King et al. [3],

can be used to make biological experiments more efficient

and less expensive. But it could not determine the number
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of initial clustering which had a great effect on the final

conclusion, so that the clustering results may be less

definitive. MCL algorithm, a representative method based

on flow simulation, was proposed by Enright et al. [4],

which was applied to detect protein functional modules in

PPI networks. It performs ‘‘inflate’’ and ‘‘expand’’ repeat-

edly to change the transition probabilities for discovering

clusters and requires no knowledge of the number of the

initial clusters. Most of these modules detection methods

limit that the node belongs to one module. Besides, Yuan

et al. proposed a method to find biomarkers by extracting

proteins network from the full text of online articles [5].

However, many real networks are composed of highly

overlapping nodes. And for the reason of biology, some

proteins of PPI network perform complex biological

functions in multiple modules.

To identify the overlaps amongmodules, a lot of different

methods based on nodes information have been submitted.

Nepusz et al. [6] proposed a method for identifying over-

lapping protein complexes from PPI networks named Clus-

terONE algorithm (clustering with overlapping

neighborhood expansion) which derived complexes with

better relevance. However, it only relies on the cohesive

force formula, and there may be deviations in the algorithm.

For example, theremay be nodes that reduce cohesion, but in

fact, the nodes do belong to candidate protein complexes.

Brohee et al. [7] compared the performance for identifying

modules in the PPI network among the MCL, RNSC clus-

tering algorithm and others, and pointed out that the MCL

algorithm had outperformed others. However, the wide-

spread use of the algorithm was hindered by its lack of

scalability. Regularized MCL algorithm (R-MCL) was

proposed by Venu Satuluri et al. [8], it not only improved the

accuracy of traditionalMCL but also redressed the weakness

of output fragmentation. Because R-MCL algorithm only

derived non-overlapping classes and cannot match overlap-

ping proteins among modules, Shih et al. [9] proposed the

soft Markov algorithm (SR-MCL) to detect highly overlap-

ping and hierarchical modules of PPI networks based on the

R-MCL algorithm. The value of F-measure in the method

was significantly higher than the value of it in the R-MCL

algorithm, the main reason was that the value of recall

increased faster than precision.

Different from the methods mentioned above, Ahn et al.

[10] first proposed an algorithm whose input network

consists of links rather than nodes, which means edges are

clustered. And Fortunato has introduced almost all methods

on clustering edges completely [11]. A Markov clustering

algorithm based on link clustering (MLC) was proposed by

Wang et al. [12] to detect the overlaps of modules which

exist in PPI network, but this algorithm is not tested in

complex datasets.

Considering the data characteristic of PPI network, a

Markov clustering algorithm based on link similarity

(MLS) is proposed in this paper to divide the PPI networks

and find the functional modules with overlapping and non-

overlapping structures. MLS includes three steps. Firstly,

calculate the edges’ similarity. Secondly, derive the

weighted links similarity matrix. Thirdly, use the Markov

clustering to partition the matrix in order to identify

functional modules. Evaluation results on the DIP, GAVIN

and KROGAN datasets show that the proposed MLS

algorithm can effectively identify overlapping functional

modules and outperform most of the similar methods.

2 Terminology

2.1 Link similarity

Link networks. We denote eik as the link that connects the

nodes i and k. The link similarity (LS) [13] between the

pair links eik and ejk sharing the same node k is measured

following the Jaccard index [10]:

LS eik; ejk
� �

¼ nþðiÞ \ nþðjÞj j
nþðiÞ \ nþðjÞj j ð1Þ

where nþðiÞ is denoted as the set of nodes, which consists

of the node i and its cs. Then, cutting some links at pre-

defined threshold builds a link similarity matrix.

2.2 Networks with weighted links

To extend the application field of the similarity between

links, we introduce the Tanimoto coefficient [14] into the

Jaccard index when it is used in networks with weighted

links (without self-loops). Consider a vector ai ¼
~Ai1; . . .; ~AiN

� �
with

~Aij ¼
1

ki

X

i02nðiÞ
wii0dij þ wij ð2Þ

where wij represents the weight on edge eij, nðiÞ ¼
jjwij [ 0

� �
represents the set of all neighbors of node i,

ki ¼ nðiÞj j, if i ¼ j, dij ¼ 1, otherwise dij ¼ 0. Then, the

similarity between edges eik and ejk similar to Eq. (1) is

now:

WLS eik; ejk
� �

¼ ai � aj
aij j2þ aj

�� ��2�ai � aj
ð3Þ
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3 Methodology

3.1 Markov clustering (MCL)

In MCL algorithm, the two processes of expansion and

inflation are alternated between repeatedly of the stochastic

matrix M. The aim of expansion operator is to make flow to

connect different regions of the graph. The aim of inflation

operator is to both strengthen and weaken of current. The

matrix M of transition probabilities changes constantly

until it has been convergent. The matrix M is defined as

follows:

Mði; jÞ ¼ Wði; jÞ
Pn

k¼1

Wðk; jÞr
ð4Þ

where W is the adjacent matrix with self-loops.

(1) Expand: Input M and the value of e, output Mexp

Mexp ¼ ExpandðMÞ ¼ Me ð5Þ

(2) Inflate: Input M and the value of r, output Minf

Minfði; jÞ ¼
Mði; jÞr

Pn
k¼1 Mðk; jÞr ð6Þ

Repeat steps (1) and (2) until the matrix M is

convergent.

Interpret resulting matrix to find clusters.

For the derived convergent matrix M, the vertices are

split into attractors and vertices that are being attracted

by the attractors. The column jth has only one nonzero

value, whose line ith represents the attractor of node vj.

Attractors and the elements they attract, which are

similar to node vj, are swept together into the same

cluster. MCL algorithm of pseudocode is shown in

Algorithm 1.

Algorithm 1 MCL

A : = A + I // Add self-loops to each node
M : = AD^(-1) // Create the stochastic transition matrix

Do
M : = Mexp (M) = Expand (M)
M : = Minf (M) = Inflate (M)

Until M converges
Interpret M to discover clusters

3.2 Link similarity-based Markov clustering
(MLS)

Although MCL produces good clustering results, it cannot

find overlapping clusters. And it usually merges functional

modules sharing the same (bridge) node(s). As shown in

Fig. 1, MCL only produces two clusters (1, 2, 3, 4, 5, 6)

and (7, 8, 9). In order to overcome the issue, we have

improved the clustering process of detecting the protein

modules based on the extended weighted link similarity

definition as formula (3) and MCL. We use the links

similarity rather than nodes interactions of PPI networks in

calculating the link similarity adjacent matrix, which is

applied to the MCL clustering process. Moreover, if the

bridge node is likely to be the attractor in MCL, at the same

time, by processing the link similarity adjacent matrix, we

can correctly produce clusters sharing the same bridge

node. For example, in Fig. 1, MCL only identifies two

clusters, but in MLS, the attractor node 4 is included in the

edge(4–5), edge(3–4) and other edges, after processed, so

MLS could produce three clusters matching the three

modules, (1, 2, 3, 4), (4, 5, 6) and (7, 8, 9).

The procedure of Markov clustering based on link

similarity (MLS) is shown in Algorithm 1. Firstly, use the

WLS formula (3) to calculate all the link similarity

between the edges that exist in the network. Secondly,

create the associated matrix M with the calculated link

similarity. Finally, apply the Markov clustering method to

process the similarity matrix M, and interpret the resulting

matrix to map the nodes in the community of the original

network.

As a traditional clustering algorithm, LC method is a

greedy algorithm. That is to say, a link may merge in a

local optimal result. On the other hand, when using the

function D to cut the link dendrogram, because of the

calculation of D, the computational complexity is always

O (n2). And then a lot of small clusters are split out in the

network.

The difference between MLS and LC, which is guar-

anteed has the advantages for identification of overlapping

structures, is that the former employs Markov clustering

(MCL) on the similarity matrix clustering, and the latter

uses HC and PD. LC may be trapped in a local optimal and

generates fragmentation of output, which is redressed by

MLS algorithm. Its core idea is the simulation of random

walk on a graph based on the visiting vertex in the graph.

The process may not end until most of its vertexes in the

Fig. 1 An example pointing out the problem of MCL. All edges have

the weight 1
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subgraph have been visited [15]. Moreover, it is not nec-

essary for MCL method to predefine number of clusters

and need less parameters compared with LC.

4 Results and discussion

4.1 Datasets

In this paper, we use three PPI networks of Saccharomyces

cerevisiae extracted from DIP [16], Gavin [17] and Kragon

[18], the details of these three networks are shown in

Table 1, to test algorithm’s improvement effect, because

the yeast PPI network is the most complete and reliable in

all species. In order to evaluate the derived sets of func-

tional modules from the MLS algorithm, we put the protein

complexes datasets from MIPS datasets and CYC2008 [19]

datasets as standard. Because the CYC2008 is known as

functional module sets, which contains 408 functional

modules obtained by biological method, we can use it to

evaluate the quality of the predicted results. The protein

functional annotation table is chosen from funcat-2.1_-

data_20070316 (ftp://ftpmips.helmholtz-muenchen.de/

fungi/Saccharomycetes/CYGD/catalogues/funcat/funcat2.

1_data_20070316). Experimental environment is a Win-

dows 7 64-bit PCS, processor type is Intel i7-2600,

3.40 GHz CPU, 4 GB of memory, with python2.7 as a

development environment.

4.2 Metrics

The MLS algorithm has run in the above three datasets, and

at the same time been compared with link clustering

algorithm and MCL algorithm. Then, several common

modularity indexes of evaluating the overlapping struc-

tures, such as EQ, coverage rate (CR), and some common

algorithm performance indicators, such as Sn, Sp, F-score,

the Precision, Recall, F-measure, are used to compare the

performance of those three algorithms used in these three

datasets.

4.2.1 EQ

A modularity measure Q was defined by Newman et al.

[20] to be used in evaluating the degree of modularization

in networks. Shen et al. [21] proposed an extended mod-

ularity function EQ to evaluate the goodness of overlapped

community decomposition. EQl, which represents a single

community, is denoted as follows:

EQl ¼
2

Mj j
X

i2Hl;j2Hl

1

OiOj

Aij �
ninj

2 Mj j

� �
ð7Þ

Here, Hl is the set of nodes after the network being divided

into k communities.M is the set of links in the network. Mj j
is the total number of links in the network. Oi is the number

of communities that node i belongs to. If there is a link

between nodes i and j, Aij = 1, otherwise Aij= 0. ni is the

degree of i. The EQ of the whole networks is defined as:

EQ ¼
Xk

l¼1

EQl ð8Þ

A higher value of EQ indicates networks with stronger

community structure. Thus, if the value of EQ is 0, all the

nodes belong to the same cluster.

4.2.2 Coverage rate (CR)

Coverage Rate [22, 23] is used in estimating how many

proteins exit in real interaction module. When a real

module set and a predicted module set of a network are

given, the coverage rate is defined as follows:

Coverage rate ¼
P

MaxfPijgP
Ni

ð9Þ

Here, Pij is the number of nodes which are shared proteins

by the ith real module and the jth predicted module of a

network. Ni is the number of proteins in the ith real

interaction module.

4.2.3 Precision, Recall, F-measure, Sp, Sn, F-score

Precision [22] is the ratio of the number of nodes in correct

clustering to the nodes in the experimental results. Recall

[24] is the ratio of the number of correct clustering nodes to

the nodes in the standard database. F-measure [25] is the

harmonic mean of Precision and Recall. Its calculation

formula is shown as follows:

precisionðci; sjÞ ¼
ci \ sj
�� ��

cij j ð10Þ

Table 1 Information of the three yeast networks used in the

experiment

Name |V | |E| Average degree of vertices

DIP 4936 17,203 6.98

Krogan 2675 7080 5.29

Gavin 1430 6531 9.13
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recallðci; sjÞ ¼
ci \ sj
�� ��

sj
�� �� ð11Þ

F-measure ¼ 2 � precision � recall
precisionþ recall

ð12Þ

Here, C ¼ fC1;C2; . . .;Ci; . . .Ckg represents clustering

results, Ci is a cluster in it, Sj is the standard cluster in the

database. The larger the number of nodes in clustering

results is, the higher the Recall value is. The smaller the

number of nodes in clustering results is, the higher the

Precision value is. Thus, that is not reasonable enough to

use precision and recall only in evaluating the clustering

results, while F-measure can be applied to evaluate the

performance of the clustering results derived from the

algorithm and the biological significance of functional

modules comprehensively.

Due to nodes’ dispersion of clustering results, the value

of Precision and Recall will be affected. As a result, the

performance of clustering results is not very clear. In this

paper, we not only calculate those indexes mentioned

above but also supplement the experiment measure indexes

with Sp, Sn [26] and F-score for further evaluation.

Sp is the ratio of the number of nodes which is more than

predefined threshold shared by module ci mined by algo-

rithm and standard clustering module sj to the total number

of nodes. Sn is the ratio of the number of nodes which is

more than predefined threshold shared by standard clus-

tering module si and module cj mined by algorithm to the

total number of nodes. F-score [27] is the harmonic mean

of Sp and Sn. It is calculated as follows:

Sp ¼
fcijci 2 C; 9sj 2 S;Overlap scoreðci; sjÞ� ag
�� ��

Cj j
ð13Þ

Sn ¼
fsijsi 2 S; 9cj 2 C;Overlap scoreðsi; cjÞ� ag
�� ��

Sj j
ð14Þ

F�score ¼ 2 � Sp � Sn
Spþ Sn

ð15Þ

Here, a is the threshold, the value is generally set as 0.2,

Overlap scoreðci; sjÞ [28] represents the similarity

between module ci mined by the algorithm and the stan-

dard clustering module. Its calculation formula is shown as

follows:

Overlap scoreðci; sjÞ ¼
ci \ sj
�� ��2

cij j � sj
�� �� ð16Þ

4.3 Performance on DIP datasets

After deriving the expansion link similarity matrix from the

DIP database, we process it with the MLS method. Its WLS

similarity matrix and clustering results are shown in Fig. 2

and Fig. (3-1). As shown in Fig. (3-1), there are totally 396

modules and most of these modules contain less than 10

proteins, rarely more than 10 proteins are contained in

modules. This is consistent to networks with a mainly

scale-free degree distribution and small-world [29] phe-

nomenon. Namely, most of the proteins interact with a few

other proteins, while a few proteins interact with many

other proteins.

Fig. 2 Link similarity matrix of PPI network from DIP database

Fig. 3 MLS result on DIP. It represents the size distribution of DIP

PPI modules obtained by MLS. The x-axis indicates the size of

modules, i.e., the number of proteins in each module. The y-axis

shows the number of modules with the size corresponding to the

x-axis
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Table 2 Comparison with three

methods on DIP network by

different evaluations

EQ CR Sp Sn F-score Precision Recall F-measure Time/s

MLS 0.5712 0.5569 0.6013 0.3426 0.4365 0.5696 0.3090 0.4007 125

MCL 0.2603 0.5204 0.6420 0.2103 0.3168 0.5883 0.1957 0.2937 71

LC 0.2497 0.3386 0.3151 0.4667 0.3762 0.4022 0.2061 0.2725 19

Table 3 MLS Modular example 1 in DIP database

Modular proteins GO functions P value

Module 1:

YOR076C, YDR293C, YDL111C, YHR081W, YMR287CYOL021C, YGR158C, YCR035C,
YLR398C, YOR001W, YDR280W, YOL142W, YGR195W, YNL232W, YGR095C,
YHR069C, YMR093W, YLR129W, YHR169W, YLL011W, YJL050W, YMR229C,
YLR222C, YMR128W, YGL171W, YNL299W, YDL175C, YJL109C, YLR409C

Biological process

GO: 0016078 * tRNA catabolic process

2.17e-29

Cellular component

GO: 0000178 * exosome (RNase complex)

2.50e-25

Molecular functions

GO: 0003723 * RNA binding

7.52e-18

Module 2:

YOR076C, YDR293C, YDL111C, YHR081W, YMR287C, YOL021C, YGR158C, YCR035C,
YLR398C, YOR001W, YDR280W, YOL142W, YGR195W, YNL232W, YGR095C,
YHR069C, YMR093W, YHR169W, YJL050W

Biological process

GO: 0071051 * polyadenylation-dependent
snoRNA 30-end processing

3.73e-27

Cellular component

GO: 0000178 * exosome (RNase complex)

4.77e-29

Molecular functions

GO: 0003723 * RNA binding

2.13e-13

Module 3:

YJL050W, YOR001W, YMR229C, YLR129W, YLR222C, YMR128W, YGL171W,
YNL299W, YDL175C, YJL109C, YLR409C, YLL011W

Biological process

GO: 0016072 * rRNA metabolic process

4.13e-16

Cellular component

GO: 0005730 * nucleolus

5.41e-16

Molecular functions

GO: 0003723 * RNA binding

2.32e-07

YJL050W

YOR001W

YLR129W

YDL175C

YLL011W

YOR001W

YLR409C

YNL299W

YLR222C

YGL171W

YMR128W

YMR229C

YDR280W

YGR095C

YLR398C

YOR076C

YOL142W

YHR169W
YGR158C

YDL111C

YHR069C

YGR195W

YNL232W

YDR293C

YMR287C

YCR035C

YHR081W

YOL021C

YMR093W

Fig. 4 Modular 1, 2 and 3 with two overlapping proteins
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As shown in Table 2, the higher evaluation value of EQ/

CR/F-score indicates that MLS outperforms LC and MCL

algorithm in these tasks, which means that the MLS clus-

tering results are closer to actual clusters, namely it has

more functional modules with biological significance. And

higher EQ score represents better community modularity.

What is more, the lower CR value of LC and MCL methods

reflects the lower coverage of original nodes in networks

and most nodes information is lost. There are 396, 351 and

545 modules derived from DIP database after being pro-

cessed by MLS, MCL, LC methods. The module size

distribution is shown in Fig. 3. In order to evaluate the

functional correlations of the clustering results, we analyze

the instantiation of the results derived from the MLS and

MCL.

The higher EQ/F-score value of MLS algorithm can be

obtained, because the MCL method is used in processing

link similarity matrix after calculating the extended WLS.

The results show that the algorithm will divide the clus-

tering results further obtained from originally MCL algo-

rithm, because MLS is based on edges rather than nodes.

So it can identify overlapping structures, the GO function

for module 1, 2 and 3 is shown in Table 3, which illustrates

modules based on biological process, molecular functions

and cellular component of Omicsbean GO enrichment, the

module 1 derived from MCL is decomposed into two

modules derived from MLS with overlapping structure of

module 2 and 3, there are 2 overlapping nodes RRP6

(YOR001W, Nuclear exosome exonuclease component,

involved in RNA processing, maturation, surveillance,

degradation, tethering and export), MTR4 (YJL050W,

Cofactor for the exosome complex, involved in nuclear

RNA processing and degradation both as a component of

the TRAMP complex and in TRAMP independent pro-

cesses, has a KOW domain that shows RNA binding

activity), shown in Fig. 4.

In addition, 13 out of 29 genes in Modular 1 belong to

same GO biological process category (GO: 0016078), 10

out of 29 genes belong to same GO biological process

category (GO: 0016072) and 22 out of 29 genes belong to

same GO molecular function (GO: 0003723), the two

modules are denser. Stronger relevance between proteins is

further subdivided into a module; then, more modular

proteins with biological significance can be obtained.

Likewise, 13 genes from Modular 2, including RRP6 and

MTR4, are in the same GO biological process (GO:

0071051) and 12 out of 12 genes from Modular 3,

including RRP6 and MTR4, are in the same GO biological

process (GO: 0016072).

Our analysis indicates that RRP6 and MTR4 may be

functionally involved in both Modular 2 and Modular 3 and

we also found studies that supported this discovery. In

Schuch’s paper [30], Rrp6 and Mtr4 physically and func-

tionally interacts with the 10-subunit core complex of the

exosome(Exo-10), and they provide detailed structural

insight into the interaction between the Rrp6 complex and

Mtr4 that medicates an important link between Mtr4 and

the core exosome.

But the MLS algorithm is based on link clustering. It is

necessary to calculate the link similarity among links to get

the link similarity matrix. The increase in link similarity

Table 4 Comparison with three methods on Krogan and Gavin by different evaluations

Dataset Method EQ CR Sp Sn F-score Precision Recall F-measure Time/s

Krogan MLS 0.5502 0.5337 0.5023 0.6204 0.5551 0.5574 0.1374 0.2205 112

MCL 0.2235 0.4729 0.5719 0.4025 0.4725 0.6310 0.0943 0.1640 60

LC 0.1796 0.4174 0.6698 0.2777 0.3926 0.5272 0.1040 0.1748 12

Gavin MLS 0.3073 0.4354 0.7835 0.4373 0.5659 0.6235 0.4873 0.5470 94

MCL 0.2661 0.3092 0.8211 0.3374 0.4782 0.7188 0.3279 0.4504 53

LC 0.1865 0.1750 0.5479 0.4418 0.4892 0.8593 0.1346 0.2327 10

Fig. 5 MLS result on Krogan. It represents the size distribution of

DIP PPI modules obtained by MLS. The x-axis indicates the size of

modules, i.e., the number of proteins in each module. The y-axis

shows the number of modules with the size corresponding to the

x-axis
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matrix processed in MCL clustering is always Oðn2Þ, and
the classical MCL based on nodes is OðnÞ. And the MCL

clustering of similarity matrix is a random walk process, it

will not stop until the matrix becomes convergent, while

the process of LC is looking for a local optimum. Thus, the

computational complexity of MLS algorithm is higher than

MCL and LC. However, considering the algorithm in cloud

computing environment [31] may be a better approach to

decrease its computational complexity.

4.4 Performance on Krogan and Gavin PPI
networks

After getting the WLS similarity matrix of Krogan and

Gavin, we applied them to the MLS method and output

the clustering results, using the listed evaluation indexes

above in analyzing the further performance of the algo-

rithm. As shown in Table 4, the value of EQ/CR/F-

measure/F-score indicates the MLS algorithm outper-

forms LC and MCL. The higher F-score value indicates

that the MLS clustering results closer to the actual

clusters, namely it has more functional modules with

biological significance, and the higher EQ score repre-

sents better community modularity. The lower CR value

of LC and MCL methods reflects the lower coverage of

original nodes in networks, and most nodes information

is lost. There are 362, 371 and 424 modules derived

from Krogan after being processed by MLS, MCL, LC

methods. And the module size distribution is shown in

Fig. 5. In order to evaluate the functional relevance of

these clustering results, we analyzed the instantiation of

the results derived from the MLS algorithm. There are a

total of 66 modules are shown in Fig. 6. There are 66,

101 and 206 modules derived from Gavin after being

processed by MLS, MCL, LC methods. And the module

size distribution is shown in Fig. 7. Comparison with

Fig. 6 MLS result on Gavin.

Sixty-six modules in PPI

network by using MLC. The

inset shows the overlapping

nodes of module of the network.

Nodes in the inset represent

modules on the original network
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MLS/MCL/LC methods on Krogan and Gavin by dif-

ferent evaluations is shown in Table 4. Figure 8 shows

that the F-measure derived from MLS/MCL/LC cluster-

ing algorithms of each network on DIP, Krogan and

Gavin.

5 Conclusion

Clustering protein–protein interaction networks for the

discovery of protein functional modules has drawn a lot of

attention. However, existing clustering algorithms do not

take into account the fact that overlapping structures in PPI

networks are usually important for biological significance.

Therefore, in an attempt to identify overlapping structure

of PPI networks and improve the accuracy of detect-

ing protein functional modules, we propose a clustering

algorithm based on links that aims at avoiding local optima

and detecting the overlapping structures. It is based on the

link similarity matrix of the transition probabilities of a

random walk; thus, it can effectively solve the bridge

partition among classes and divide the overlapping struc-

tures into tightly formed functional modules, which have

the same protein annotation. The results of experiments on

the three PPI networks have indicated that the F-measure/

EQ/CR value of MLS algorithm has larger ascension than

the original LC algorithm and classical MCL algorithm.

There are still shortcomings, such as the high computa-

tional complexity, the large number of big clusters and the

large number of clusters. As part of future work, we will

continue improving our MLS method after taking the

dynamic and emergent properties of PPI network into

account in order to discover more functional modules

which are crucial in multiple species.
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