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Urban Land-Use Classification From Photographs
Fang Fang, Xiaohui Yuan , Senior Member, IEEE, Lu Wang, Yuanyuan Liu, and Zhongwen Luo

Abstract— Land-use (LU) classification of urban areas is
conventionally achieved via field survey or remote sensing tech-
nologies, which is labor-intensive and time-consuming. With the
wide development of social networks such as microblog and
ubiquitous network access, images are captured by residents and
tourists. In this letter, we propose a method for an automatic
urban LU classification using geotagged images from public
venues. Our method identifies the LU type depicted in those
images that are extrapolated to the local regions bounded
by street blocks. Experiments were conducted with geotagged
photographs and Open Street Map of an urban area in London,
U.K. It was demonstrated that the proposed method achieved
overall 76.5% accuracy across five LU types. More importantly,
our method demonstrated a greater performance in dealing with
a mixture of LU types.

Index Terms— Classification, land use (LU), urban, volunteered
geographic information (VGI).

I. INTRODUCTION

URBAN land use (LU) provides important derived data
for applications such as environmental research, spatial

planning, and urban management [1]–[4]. Knowledge of the
distribution of vegetation, water body, commercial and resi-
dential land usage, as well as information on their changing
proportions, is needed by the state and local governments and
legislators to allocate resources, e.g., transportation infrastruc-
ture and water supply, and to identify regional development.

Urban LU has been conventionally achieved via field sur-
vey or remote sensing technologies, which is labor-intensive
and time-consuming. The high cost and infrequent updates
hardly meet the needs of rapidly changing modern cities.
With the development of social networks such as photograph
sharing, a large number of images have been generated by
tourists and residents. The emergence of volunteered geo-
graphic information (VGI) data motivates the LU analysis
from a new perspective [5]. Geotagged images are acquired
and shared on Flickr, Facebook, and other social networks,
which have become an important image source [6]. The
geotagged images demonstrate a great promise for generating
LU maps [7]. Yet, the unevenly distributed image in the
urban space and number of geotagged images for different
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LU types and the great diversity of image content make the
LU classification a great challenge.

In this letter, we propose a method for automatic urban
LU classification using unevenly distributed geotagged images.
We leverage geotagged photographs from social networks and
Open Street Map (OSM) and identify the LU type depicted in
those images that are extrapolated to regions bounded by street
blocks. The contribution is twofold: 1) a hierarchical street-
based land division to circumvent uneven spatial distribution
of photographs and 2) concise, specialized object bank (OB)
for scenic street photographs classification.

The rest of this letter is organized as follows. Section II
reviews recent advances of the LU classification. Section III
gives details of the study area and data used in this letter.
Section IV describes our proposed method. Section V presents
our experimental results. Section VI concludes this letter with
a summary.

II. RELATED WORK

Considering the low-cost characteristic of the VGI data,
it has shown a great potential for geographers to recognize
different LU types [5]. The easily accessible, low-cost VGI
data have been used in LU and land-cover (LC) classifica-
tion [8], [9], and the research has made great achievements.
Yuan et al. [10] adopted a method of natural language
processing to combine GPS data and point of interest (POI) to
realize urban function zoning of Beijing through establishing
a semantic model. Based on bus smart card data and POI
data, Long and Shen [11] demonstrated the spatial distribution
of urban function zones in Beijing through the construc-
tion of discovering function zones via the cluster analysis.
Pei et al. [12] used mobile phone data to determine the social
functions of the land using mobile phone data to characterize
LU types and used a semisupervised fuzzy c-means clustering
approach to infer the LU types. Rodrigues et al. [13] used
multisource POIs to make the classification.

In addition to the POI data, photography has been exploited
for inferring LU. Estima and Painho [14] evaluated pho-
tographs from Flickr for the LU classification for the city
of Coimbra and conducted a comparison with Corine LC
classes (levels 1 and 2) for continental Portugal. It was found
that the uneven spatial distribution of the photographs induces
errors and improvement could be achieved by integrating other
VGI sources. Leung and Newsam [7] used geotagged pho-
tographs from Flickr and Geograph. The method was evaluated
on LU maps from university campuses and the overall results
suggested the potential of generalizing this approach to areas,
where LU maps are unavailable or are outdated.

In contrast to numerical data, e.g., GPS and phone records,
using VGI photographs for the LU generation has not been
fully studied. This is due to much greater difficulties in
processing images to extract the semantic information as well
as the sparseness and unevenness of the available photographs.
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Fig. 1. Spatial distribution of photographs. Each dot marks the location of a
photograph and the distribution is extremely uneven. (The background image
is obtained from Google Map on March 20, 2018.)

Our hypothesis is that VGI photographs of an urban area allow
automatic generation of LU via the data density-driven land
division and robust photograph classification algorithms.

III. STUDY AREA AND DATA SETS

The study area is at the center of the metropolitan London,
U.K., with an area of 110 km2, which is composed of various
LU types including residential area, commercial area, water
body, open space, and so on. A large volume of the VGI
data of London such as photographs is shared via social
networks. In this letter, we adopted the geotagged images
from the Geograph Britain and Ireland project as our source of
geotagged images, which consists of 24 835 images with GPS
coordinates. The spatial distribution of these photographs is
shown in Fig. 1.

In addition to photographs, the road networks of London
are obtained from OSM [15]. The data set contains streets
of different classes that are organized according to the street
level and width. Street levels include primary highways, pri-
mary roads, secondary roads, and small roads (i.e., local and
neighborhood streets). The OSM is updated constantly, but for
a matured city such as London, changes of road network are
minimal.

IV. METHOD

Our method consists of space division and photograph
classification. In the space division, the study area is divided
into small regions. The hierarchical street network is used to
facilitate the division. In the photograph classification phase,
selected features are extracted from each photograph, and a
classifier is used to predict the depicted LU type. For a street
block with more than one photograph, majority voting is used
to make the final decision and extrapolate to the entire block.
If no photograph exists in a street block, a large-scale block
is used, which is constructed with streets in an upper level in
the street hierarchy.

A. Urban Space Division Using Hierarchical Street Networks

Let I denote an urban space and I (u, v) is a geolocation at
coordinates u and v. For a photograph p, a pair of coordinates
(u, v) is assigned through geotagging, i.e., p(u, v). To decide
the LU from a set of photographs, we divide the urban space
into parcels, denoted with Ĩ (U, V ), where U and V are the
sets of continuous coordinates. Ideally, each parcel represents
a homogeneous LU type, that is,

f ( Ĩ (U, V )) = f (pi), i ∈ [1, N] (1)

where f (·) is the mapping function that classifies the LU type
of a photograph pi . When inconsistent LU types are identified
for the photographs, the dominate LU type is used as the LU
type of the parcel Ĩ (U, V ).

A typical issue of the VGI data is the uneven geospatial
density. The spatial distribution of the geotagged photographs
is usually discontinuous and varies across the urban space
as shown in Fig. 1. In a region with many photographs,
it is likely that there is more than one photograph in a
parcel. In addition, in a region that is not a tourist attrac-
tion or a business, there exist street blocks that contain no
photographs. Hence, the division of an urban space needs
to be adaptive to the density of the spatial distribution of
photographs.

To address this issue, we put streets into three categories:
primary, secondary, and tertiary streets. When dividing an
urban space, the small-scale parcels, denoted with Ĩ (3), are
constructed using streets from all categories. If there is no
photograph in a small-scale block, a medium-scale parcel,
denoted with Ĩ (2), is constructed using the secondary and
primary streets that enclose the small-scale parcel in question.
If again there exists no photograph in the medium-scale block,
a large-scale parcel, denoted with Ĩ (1), is constructed using
the primary streets that enclose the medium-scale parcel. Fol-
lowing this hierarchical urban space division scheme, parcels
adapted to the photograph density are generated.

For a parcel Ĩ (m) that contains no photograph, its LU type
is the same as that of a coarser scale, denoted with Ĩ (n) and
n < m, where Ĩ (m) ⊂ Ĩ (n), that is,

f ( Ĩ (m)) = f ( Ĩ (n)), n < m. (2)

When more than one LU type exists in Ĩ (n), the LU type for
Ĩ (m) is decided by the weighted majority from the finer scale
parcels in Ĩ (n)

f ( Ĩ (m)) = arg max
k

{∑
wi

wi f
(

Ĩ (m)
i (U, V ; k)

)}
(3)

where Ĩ (m)
i (U, V ; k) denotes a parcel with the LU type k, and

the weight wi is inverse proportional to the distance to Ĩ (m).

B. Photograph Classification Using Object Bank

To correctly classify photographs that contain a variety
of mixed ground objects in the complex spatial context,
representative image features are crucial. Yet, the variety of
photographs posted to the social networks is extraordinary, for
instance, a shopping center could have a number of views that
differ greatly in scale, perspective, spatial relation to nearby
objects, and so on. Hence, low-level image features suffer from
consistency and stability. To address the class feature diversity,
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TABLE I

LU CATEGORIZATION AND MATCHING SCHEME

we extend the OB [16] by specializing it to the urban scenery
through feature selection. A generic OB is obtained by ranking
the object according to their frequency of occurrence in data
sets including extrasensory perception, LabelMe, ImageNet,
and Flickr photograph set.

The key idea of OB presents an image as a collection
of semantic-level objects. A generic OB feature collection is
constructed by training a number of models for various objects.
The initial object responses are obtained by applying filters to
an image at various locations and scales. A hierarchical block
structure with different granularities is formed according to
the spatial pyramid model. In our method, feature selection
for urban scenery-specialized OB is performed by evaluating
the impact of each feature on the accuracy by removing it
from the collection. Many of the features are irrelevant to
the classification of LU, e.g., snail and key; hence, the most
influential ones are retained for our classification.

C. Land Use of Parcels

For each parcel, we constructed two indexes to identify its
LU type: frequency density and category ratio. The frequency
density of the type k photographs with respect to the total
number of photographs of the type is denoted with Fk , and
the ratio of the frequency density of the type k photographs
to the density of all the types in a parcel is denoted with Ck
and computed as follows:

Ck = Fk∑nk
k=1 Fk

, and Fk = nk

Nk
(4)

where nk denotes the number of photographs of type k in
a parcel, and Nk denotes the total number of the type k
photographs.

Following (4), we calculate the frequency density and
category ratio of each parcel. When the proportion of a certain
type of photograph in the unit accounts for 50% or more, it is
determined as a parcel of single-used land and the type is the
same as that of the photographs. When all types of photograph
points in a unit are less than 50%, it is considered as a parcel
of multiuse land. The type of mixture depends on the top
two dominant types of the photographs in the parcel. When
the parcel contains no photographs (i.e., the category ratio is
zero), it is considered as an unclassified area.

TABLE II

AVERAGE ACCURACY USING DIFFERENT NUMBER OF FEATURES

V. EXPERIMENTAL RESULTS

A. Experimental Data and Settings

To evaluate the proposed approach, the results are compared
with the Global Monitoring for Environment and Security
Urban Atlas (GMESUA) data, which are derived from the
Earth observation data supported by topographic maps. The
LU types in GMESUA data are very detailed and many
differ only in degrees, e.g., discontinuous dense/medium-
density/low-density urban fabric. To be consistent, we put
photographs into five categories that match the GMESUA LU
types as listed in Table I.

The street networks from OSM data were categorized into
three levels according to their width: primary streets that are
greater than and equal to 40 m, secondary streets that are
lesser than 40 m and greater than and equal to 12 m, and
tertiary streets that are less than 12 m. In our experiments,
all photographs were resized to 128 × 128. Support vector
machine was used for the classification with a radial basis
function kernel. A fivefold cross validation was performed in
our studies.

To derive a specialized OB for urban photographs, we eval-
uated the impact of objects to the classification accuracy.
Table II lists the classification accuracy with respect to the
number of features. In each case, the less significant features
are removed. With all features, the average accuracy is 86.1%.1

As the number of features decreases, the accuracy decreases.
In the rest of our experiments, 150 objects are used in
photograph classification.

B. Photograph Classification Analysis

The reliability of photographs inevitably affects the perfor-
mance of LU classification. Erroneous LU labels arise from
the unaligned dominant foreground objects depicted in the

1Note that this is different from LU accuracy. It deals only with regions
that have photographs, and extrapolation to estimate the regions without
photographs is not practiced.
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Fig. 2. Comparative view of the LU results. (Top row) Results of the proposed method on different parcel scales (coarse to fine from left to right).
(Middle row) Results from grid-based method [7] based on three gridding scales (coarse to fine from left to right). (Bottom row from left to right) Integrated
result of our method, GMESUA data, and integrated result of method in [7].

images. For example, a fairly large portion of the foreground
of a photograph shows part of a residential building in front of
a park, and because of the presence of a building, the classifi-
cation, which typically underweighs objects in the background,
decides the scenery that represents a residential area. To better
understand the reliability of photograph classification, we con-
duct experiments and generate a confusion matrix as given
in Table III. We obtained an overall accuracy of 76.5% for the
five classes: residential, commercial, institution, open space,
and water body. Institution type had the highest producer’s
accuracy (85%) in built-up areas, whereas an open space had a
relatively lower rate of 56.6%. The user’s accuracy essentially
tells the reliability of the classification to the actual LU types.
In our experiments, the user’s accuracy of all except open
space is above 70% and the institution type yields the best
reliability.

The three-level LU mapping results are shown
in Fig. 2 (Top row). The mixture type (in orange color)
represents the structures for both commercial and residential
usages. From the resulted LU map, over 60% areas in London
are residential. The residential areas are in the northern part
of London, while the commercial areas are mostly along both
sides of the Thames river. Fig. 2 (Middle row) depicts the
results from the grid-based method [7]. The area is gridded
into three scales and the integrated result is shown on the
right of Fig. 2 (Bottom row). The result of our method and the

TABLE III

ACCURACY OF PHOTOGRAPH CLASSIFICATION. PA: PRODUCER’S
ACCURACY AND UA: USER’S ACCURACY

LU map of GMESUA data are shown in Fig. 2 (Bottom row).
In comparison with the GMESUA data, the results of our
method are mostly consistent with the LU map of GMESUA.
The overall accuracy of the grid-based method is 49.14%.

C. Comparison Study

We selected two representative regions to compare with the
GMESUA data and validated by street views: the Thames river
bank and the northwest corner of the study area.

1) Thames River Bank: As shown in Fig. 3(a), a majority
of this area is for business functions and a smaller por-
tion is for multifunctional structures as well as residences.
However, Fig. 3(b) illustrates two LU types, commercial
and residential usages, and they distribute along the river.
There exist disagreements between our results and the
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Fig. 3. (a) and (b) LU result and GMESUA LU map along the Thames river
bank. (c) and (d) Google street view photographs. The numbers are the GPS
coordinates of these photographs.

Fig. 4. Comparison of the LU map of the northwest corner of the study
area. (a) Our result. (b) GMESUA data.

LU map from GMESUA. To understand the disagreements,
we pulled the photographs from Google street view as shown
in Fig. 3(c) and (d). It is clear that there are many business
shops as well as mixtures of commercial and residential
usages. Such multifunctional structures are mostly of the same
form: the lower floors are for a commercial purpose and the
upper floors are for residence. Hence, it is evident that our
method provides a more accurate description of the true LU
in contrast to the LU presented by GMESUA.

2) Hampstead Heath: Fig. 4 shows the LU map produced
by our method and the GMESUA data. The LU map in the
GMESUA data in Fig. 4(b) shows large but disconnected areas
of an open space that is colored with green; whereas our results
as shown in Fig. 4(a) shows relatively limited open space
region. A noticeable sized region in our results is marked with
gray color, which indicates unclassified LU. In addition, there
exist false identified LU types, such as water body depicted in
blue in Fig. 4(b). In comparison with Fig. 1, it is easy to see
that there are much fewer photographs for the top half of the
study area. A very few numbers of photographs provide weak
support to the LU classification and make spatial extrapolation
error prone. Our proposed method is able to identify LU
types by leveraging the urban land unit generated from the
hierarchical road networks.

D. Efficiency

Our method is implemented with MATLAB R2016b in a
PC with Intel Xeon E5-2650, 16-GB memory, and Ubuntu
system. In our evaluation of time, 3000 images are randomly

selected and used as the training images, and 1000 images
are used as the testing images. The average training time per
image is 0.72 s and the average time to classify an image
(i.e., testing) is 0.53 s. For a typical urban area such as London,
which accumulates about 5000 images (at the time of this
letter), our system takes less than an hour to complete the LU
classification.

VI. CONCLUSION

This letter presents a new approach to extract the image
semantic information for LU studies. The proposed method
employs the VGI data, which make this approach economi-
cally advantageous and efficient without the need for field-
work. The proposed method eases the process of updating
LU maps. For future work, integrating VGI data of different
modalities and sources such as Wikimedia, POIs, or remote
sensing imagery could fill the gap of missing data and lack of
examples.
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