
1798 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 8, AUGUST 2017

Inverse Sparse Group Lasso Model
for Robust Object Tracking

Yun Zhou, Jianghong Han, Xiaohui Yuan, Senior Member, IEEE, Zhenchun Wei, and Richang Hong, Member, IEEE

Abstract—Sparse representation has been applied to visual
tracking. The visual tracking models based on sparse
representation use a template set as dictionary atoms to reconstruct
candidate samples without considering similarity among atoms.
In this paper, we present a robust tracking method based on
the inverse sparse group lasso model. Our method exploits both
the group structure of similar candidate samples and the local
structure between templates and samples. Unlike the conventional
sparse representation, the templates are encoded by the candidate
samples, and similar samples are selected to reconstruct the
template at the group level, which facilitates inter-group sparsity.
Every sample group achieves the intra-group sparsity so that the
information between the related dictionary atoms is taken into
account. Moreover, the local structure between templates and
samples is considered to build the reconstruction model, which
ensures that the computed coefficients similarity is consistent
with the similarity between templates and samples. A gradient
descent-based optimization method is employed and a sparse
mapping table is obtained using the coefficient matrix and hash-
distance weight matrix. Experiments were conducted with publicly
available datasets and a comparison study was performed against
20 state-of-the-art methods. Both qualitative and quantitative
results are reported. The proposed method demonstrated improved
robustness and accuracy and exhibited comparable computational
complexity.

Index Terms—Computer vision, hash distance, sparse coding,
sparse group lasso, visual tracking.

I. INTRODUCTION

OBJECT tracking, one of the important and challenging
research subjects in the field of computer vision, has

been receiving a great amount of attention and investment
of researchers. The object tracking algorithms extract image
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Fig. 1. Challenging factors for object tracking including illumina-
tion(Singer1), occlusions(Suv), and background clutter(Ironman). Rectangles
in several colors are used to show the tracking results of the Struck [3], SCM
[4], DSSP [9], KCF [10], EBT [11], DLT [12], CSK [13], ALSA [14], and our
method.

low-level information from continuous video or image sequence
and detect object to get the parameters of the target object, such
as location, speed, trace, and other information. It is widely used
in applications such as behavior analysis, motion recognition,
and traffic control, etc. Although a large number of tracking
algorithms have been developed in recent years [1]–[8], it re-
mains a challenging problem that demands further study for
robust methods to overcome many practical issues such as oc-
clusion, illumination variation, and background clutter as shown
in Fig. 1.

A tracking method usually consists of three components: a
motion model, an observation model, and an update strategy.
The motion model, e.g. particle filter [1], aims at describing the
motion states of an object over time and predicts the possible
position based on a set of possible regions. The purpose of an
observation model is to calculate the likelihood of the possible
region, and is updated frequently to adapt to the changes of the
object as well as the background. An update strategy is to fine-
tune the parameters of the observation model according to the
video and the target objects.

In this paper, we propose a novel tracking method based on in-
verse sparse group lasso (ISGL) model. With the inverse sparse
structure, templates are encoded with a small number of sam-
ples. Group sparsity is used to explore the commonality among
atoms and inter-group and intra-group sparsity are ensured by
the group sparsity regularization, which selects a set of relevant
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atoms and hence reduces the reconstruction error. In addition,
the local structure of templates is considered to keep the com-
puted similarity coefficients in accordance with the similarity
between the templates and the atoms. Using sparse coefficient
matrix and distance weight matrix, a discriminative sparse map-
ping table is constructed, in which the weight matrix is measured
by hash distance. The tracking problem is hence transformed
into an optimization problem with constraint. Throughout the
tracking process, the templates are updated to handle occlusion
and recover from drifts.

The contributions of this work is three-fold: 1) A novel ro-
bust tracking method based on an ISGL model, which is an
inverse sparse reconstruction structure with group sparsity con-
straint. Templates are reconstructed from candidate atoms at
the group level, and the templates are represented efficiently
with few errors. 2) A local structure of templates is used to
keep the computed coefficients similarity in accordance with
the similarity between templates and samples, which improves
the robustness and accuracy. 3) A discriminative sparse map-
ping table is constructed from the sparse coefficient matrix and
hash distance weight matrix to refine the sparse coefficients for
improved target discrimination.

In the rest of this paper, we review the background and related
work in Section II. Section III presents the inverse sparse rep-
resentation model. Section IV discusses the details of our pro-
posed ISGL algorithm. The experimental results are presented
in Section V followed by a conclusion in Section VI.

II. BACKGROUND AND RELATED WORK

A. Particle Filter Framework

Particle Filter is a Bayesian sequential sampling technique
and has been applied for object tracking. Assume that Z is
the state of tracked object and O is the observation. Z1:τ =
(Z1 ,Z2 , . . . ,Zτ ) represents the available state vectors up to
time τ and O1:τ denotes their corresponding observations. Six
affine motion transformation parameters are used to describe the
state of the object including the location translations, rotation
angle, scale, aspect ratio, and skew. These parameters are mutual
independent and follow Gaussian distributions. The posteriori
probability of the object state at time τ is estimated by the
following rule:

p(Zτ|O1:τ )=p(Oτ|Zτ )
∫
p(Zτ|Zτ−1)p(Zτ−1|O1:τ−1)dZτ−1

(1)
where the dynamic motion model p(Zτ |Zτ−1) predicts the con-
ditional transition probability of the target states between the
two adjacent frames and p(Oτ |Zτ ) denotes the observation
likelihood. The particle filter is used to select N samples Zi

τ ,
i = 1, . . . , N to simulate the posterior probability distribution
p(Zτ |O1:τ ). The optimal state at time τ can be estimated by the
maximum a posteriori probability (MAP) over these samples,
where Zi

τ is the state of i-th sample at time τ

Ẑτ = argZ i
τ

max p(Oτ |Zi
τ .)p(Z

i
τ |Zτ−1). (2)

B. Sparse Representation

1) Preliminaries and Notations: In this paper, vectors are
presented in lower-case, bold font, and matrices are in upper-
case, bold font, for instance, a vector a = (a1 , a2 , . . . , ak ),
where ai is the i-th element in vector a, and a matrix A =
[a1 ,a2 , . . . ,ak ], where ai indicates the i-th column in matrix
A. aij denotes the element in the i-th row and j-th column
in matrix A. I denotes the identity matrix. The symbol � is a
Hadamard product operator, which multiplies the corresponding
elements between two matrixes.

2) General Lasso Method: Least Absolute Shrinkage and
Selection Operator (Lasso) method achieves a reconstruction
by minimizing the following loss function [15]:

arg min
b

(‖a−Db‖22 + λ‖b‖ρ) (3)

where a ∈ Re×1 represents the given data which is recon-
structed, D ∈ Re×k represents k dictionary atoms, and b ∈
Rk×1 is the sparse coefficients or codes of data a, λ > 0 is
a weight parameter. When ρ = 0, ‖b‖ρ is the �0-norm of b,
which means the total number of nonzero elements in vector b.
Unfortunately, the solution of �0-norm is NP-hard even though
it is a perfect sparsity constraint. The �1-norm constraint results
in many zero elements and its outcome is close to that of the
�0-norm. Moreover, it is convex, which allows a solution to be
computed rather easily. Thus �1-norm is widely adopted as an
approximate constraint of �0-norm in practices.

3) Sparse Model in Object Tracking: In object tracking,
given a video (or an image sequence) and the initial position of
the target, we track the target in the following video frames. Sup-
pose that a candidate sample set Y = [y1 ,y2 , . . . ,yN ] ∈ Re×N

is extracted from the current frame τ , while the template set
T = [t1 , t2 , . . . , tM ] ∈ Re×M consists of object templates and
background templates. The best candidate sample can be se-
lected as the tracking result in the current frame.

General Sparse Model: In the sparse representation, the tem-
plate set T is treated as dictionary D, y ∈ Re×1 represents a
candidate sample region. A few atoms are selected from D to re-
construct y following the �1-norm constraint, and the coefficient
vector b is obtained as follows:

arg min
b

(‖y −Tb‖22 + λ‖b‖1), s.t. b ≥ 0. (4)

The sparse coefficient for each sample in Y is computed based
onD, which yields a coefficient matrixB = [b1 ,b2 , . . . ,bN ] ∈
RM×N . The optimal tracking result is chosen from Y accord-
ing to the reconstruction error. In this model, the optimization
process is performed for each candidate, which results in a high
computation cost.

Inverse sparse model: To reduce the computation cost, we
consider the method of inverse sparse representation. Con-
versely, dictionary D is composed of a candidate set Y. Taking
one object template t as an example, it is reconstructed from Y
within a �1-norm constraint

arg min
b

(‖t−Yb‖22 + λ‖b‖1), s.t. b ≥ 0. (5)
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Fig. 2. General sparse model and inverse sparse model. In the sparse model,
the candidate sample set is reconstructed by the templates. In the inverse sparse
model, the template set is reconstructed by the candidate samples in turn.

The candidate with the maximum value in the coefficient
vector b is selected as the optimal tracking result. To assure the
tracking reliability, all templates in set T are reconstructed by
the candidate set Y. An optimal candidate is identified from
the coefficient vectors bi , i = 1, 2, . . . ,M . Since the number
of the selected templates M is much smaller than that of sam-
ples N , the complexity of optimization is greatly reduced. The
difference between the two models is shown in Fig. 2.

The general lasso tends to select atoms based on the strength
of individual atom. The underlying commonality among dic-
tionary atoms is usually ignored. This often results in selecting
more atoms than necessary to represent the given data, and noisy
atoms could be introduced.

4) Sparse Group Lasso Model: In recent years, the group
property in the sparse representation has attracted many re-
search interests [16], [17]. The group sparsity consists of two
aspects: inter-group sparsity and intra-group sparsity. The inter-
group sparsity refers to the sparsity between different groups,
while the intra-group sparsity is the sparsity within a group of
instances.

If a dictionary is divided into disjointed groups according
to the similarity, the given data can be sparsely represented
by a set of groups, rather than atoms, which achieves the
inter-group sparsity. In addition, all atoms in these selected
groups have a strong correlation with the given data. Suppose
a dictionary D = [d1 ,d2 , . . . ,dk ] = [D(1) ,D(2) , . . . ,D(G) ] ∈
Re×k with k atoms in D is divided into G groups. For ease of
notation, di denotes the i-th atom of the dictionary D, D(g) is
used to represent the atoms within the g-th group, b(g) is the
corresponding coefficient of that group. The coefficient vector
b of the group lasso model [18] is computed as follows:

arg min
b

⎛
⎝

∥∥∥∥∥a−
G∑

g=1

D(g)b(g)

∥∥∥∥∥
2

2

+ λ

G∑
g=1

√
ng

∥∥∥b(g)
∥∥∥

2

⎞
⎠ (6)

where λ is parameter to control the weight of the regularization
term, and ng is the number of atoms in group D(g) . When

a group is selected, all the atoms in this group are used in
reconstruction. Thus, the group lasso considers the inter-group
sparsity without taking into account the intra-group sparsity.

To take into account both the inter-group sparsity and intra-
group sparsity, Friedman et al. [19] presented the group sparse
lasso by adding an additional �1-norm term

arg min
b

⎛
⎝1
2

∥∥∥∥∥a−
G∑

g=1

D(g)b(g)

∥∥∥∥∥
2

2

+λ1

G∑
g=1

√
ng

∥∥∥b(g)
∥∥∥

2
+λ2‖b‖1

⎞
⎠.
(7)

The second term expresses the inter-group sparsity, while the
third term represents the intra-group sparsity. The parameters
λ1 and λ2 balance the two sparsity constraints (λ1 = 0 gives
the lasso fit, λ2 = 0 gives the group-lasso fit). Fig. 3 illustrates
the idea of the general lasso, the group lasso and the sparse
group lasso model, where a is reconstructed with D and b is
the sparse coefficient. In the general lasso model, the dictionary
atoms are treated to be individual and the coefficient b gener-
ates the element-sparsity through the whole column, as shown
in Fig. 3(a). In the group lasso model, D and b are divided into
groups. The groups of zeros exist in b due to the inter-group
sparsity, while the atoms in a group with non-zero values are
chosen, as shown in Fig. 3(b). In the sparse group lasso model,
besides the existing inter-group sparsity, parts of atoms are se-
lected in non-zero groups due to intra-group sparsity, as shown
in Fig. 3(c).

C. Related Work and Problem Context

1) Generative and Discriminative Tracking: Visual tracking
algorithms, in general, can be divided into two main categories:
generative and discriminative trackers. Generative methods [2]
focus on how to represent the appearance of objects and search
the most similar one in the candidate regions with minimal re-
construction error. In [20], the incremental visual tracker (IVT)
learns a subspace model that cope with the appearance changes.
MTT [21] method formulates object tracking in a particle filter
framework as a multi-task sparse learning problem. Yang et al.
[22] propose a tracking method from the perspective of mid-
level vision with structural information captured in super-pixels
(SPT). In [4], the SCM tracker develops a sparse discriminative
classifier and sparse generative model within the collaborative
appearance model. ASLA[14] exploits both partial and spatial
information with an alignment-pooling method to represent the
targets. In [23], Laura et al. use the distribution fields (DFs) to
represent the targets and images, and searching for targets in an
image is achieved with a gradient descent method.

Discriminative methods [24] aim to build online classifiers to
distinguish the target region from the background. The Struck
method [3] adopts the kernelized structured output support vec-
tor machine to avoid the labeling ambiguity when updating the
classifier during tracking. The multiple instance learning (MIL)
is applied to an online setting for object tracking [25]. DLT [26]
trains a stacked deionising autoencoder offline to extracting the
robust image features in visual tracking. The EBT [11] learns
the trajectory of the target and the reliability of each tracker
jointly in the ensemble. CSK [13] tracker exploits the circulant
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Fig. 3. Three sparse models. (a) General lasso model. b consists of zeros and non-zero values. (b) Group lasso model. b consists of groups of zeros and groups
of non-zero values. (c) Sparse Group lasso model. b consists of group of zeros and groups of non-zero values.

structure of adjacent image patches in a kernel space. KCF [10]
uses the properties of a circular structure in the frequency do-
main and improves processing speed and accuracy by using the
multi-channel features and Gauss kernel function.

2) Object Tracking Using Sparse Representation: The
sparse representation has been applied to face recognition [27],
image classification [28], image super-resolution [29], and other
computer vision applications [30]–[32], which yielded good per-
formance. Extensive research has been dedicated to object track-
ing with favorable experimental performance. Mei and Ling [33]
proposed a visual tracking algorithm by framing the tracking
problem as a sparse representation of candidates. Each candi-
date sample is reconstructed from dictionary atoms composed
of target and trivial templates. This leads to a sparse coefficient
vector, i.e., coefficients of trivial templates are close to zeros.
The candidate sample with the smallest reconstruction error is
used.

The computational cost restricts the application of the afore-
mentioned methods in real-time tracking applications [34]. To
improve the efficiency, Bao et al. [35] proposed an efficient
method of accelerated proximal gradient descent (APG) to boost
the speed of �1 tracking process. Liu and Sun [36] used the
sparsity-induced similarity to construct the tracker. Templates
are represented by the candidates, and the coefficients imply
the similarity between the candidates and the templates. This
method performs one optimization for each template. Zhuang
et al. [9] formulated the tracking problem as finding the can-
didate that scores highest in the evaluation model based on a
discriminative sparse similarity map (DSSP).

However, uncorrelated atoms are usually selected and the un-
derlying commonality shared among the dictionary atoms are
ignored in the aforementioned methods. To take advantage of
the commonality among atoms, we propose a robust tracking
method based on the inverse sparse group model. Group sparse
tracking exploits the dual group structure of both candidate sam-
ples and dictionary templates and formulates the sparse repre-
sentation at group level to ensure data with similar appearance
are encoded jointly [37]. In this paper, we combine the inverse

and group lasso sparse representation structure to reduce com-
putational time and reconstruction error. Positive atoms are se-
lected based on the strength of groups of similar ones rather than
the individual column. Moreover, a local structure information
is embedded in this joint framework, the underlying relation-
ship between templates and atoms are fully utilized. In addition,
an adaptive updating mechanism is developed to handle heavy
occlusion and recover from drifts.

III. INVERSE SPARSE GROUP LASSO (ISGL) MODEL

According the related sparse representation models which are
reviewed in the preceding section, we introduce our proposed
inverse sparse group lasso (ISGL) framework in Sections III-A
and III-B, the optimization scheme is presented in Section III-C.

A. Inverse Sparse Group Lasso

Based on the above analysis and the existing researches [19],
[38]–[40], our objective function of the general inverse sparse
group model is as follows:

arg min
b

⎛
⎝1
2

∥∥∥∥∥t−
G∑

g=1

Y(g)b(g)

∥∥∥∥∥
2

2

+ λ1

G∑
g=1

∥∥∥b(g)
∥∥∥

2
+ λ2‖b‖1

⎞
⎠
(8)

where t ∈ Re×1 represents a template. Given a candidate sam-
ple set Y = [Y(1) , . . . ,Y(G) ] = [y1 , . . . ,yN ] ∈ Re×N , b =
[b(1) , . . . ,b(G) ] ∈ RN×1 is the sparse coefficient vector, and
b(g) is the corresponding coefficient of a group Y(g) . Again, λ1
and λ2 are the weights of the two sparsity constraints.

B. Inverse Sparse Group Lasso Model

According to the sparse representation, if two samples are
similar in an original space, they are also close after projection
into the new space spanned by the dictionary [41], [42]. This
process is shown in Fig. 4. The local structure between template
and atoms is conducive to reconstruct a more accurate template,
which means a template is represented by more similar atoms.



1802 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 8, AUGUST 2017

Fig. 4. Local structure between two vectors. VectorsA andB are close in the
original space xOy, and they are also similar in the new space uOv.

According to Laplacian Eigenmaps, we expect to preserve the
local structure in the new space to achieve a better reconstruc-
tion. We add a Laplacian constraint to ensure the local structure
as follows:

N∑
i=1

‖b− ui‖22 · pi. (9)

Given a template t, the k nearest neighbors in a candidate
sample set Y = [y1 , . . . ,yN ] are identified together with a
similarity vector p = (p1 , . . . , pN )�, where pi = e−‖t−y i ‖2 /σ

represents the similarity between atom yi and template t. The
constraint

∑N
i=1 ‖b− ui‖22 · pi is used to measure the similarity

between the template and the atom in the new space, where ui is
the projection vector of the i-th atom yi and b is the projection
of template t in the new space. It is represented as follows:

N∑
i=1

‖b− ui‖22 · pi = b�Db− 2b�Up +
N∑
i=1

ui�piui (10)

where D =
∑N

i=1 pi and U = [u1 ,u2 , . . . ,uN ].
By combining (8) and (10), the objective function becomes

arg min
b

⎛
⎝1

2

∥∥∥∥∥t−
G∑

g=1

Y(g)b(g)

∥∥∥∥∥
2

2

+ λ1

G∑
g=1

∥∥∥b(g)
∥∥∥

2

+ λ2‖b‖1 +
1
2
α

N∑
i=1

‖b− ui‖22 · pi
)

(11)

where α is the weight of the local structure constraint.
According to [39], the sum of the first and fourth terms in

(11) is equivalent to

arg min
b

1
2
(b�Ỹ�Ỹb− 2b�Ỹ�t̃) (12)

where Ỹ�Ỹ = Y�Y + αDI and Ỹ�t̃ = Y�t + αUp. Ỹ�Ỹ
is a positive definite matrix, and we can get Ỹ through the
Cholesky decomposition. Thus we can simplify the objective
function as follows:

arg min
b

⎛
⎝1
2

∥∥∥∥∥t̃−
G∑

g=1

Ỹ(g)b(g)

∥∥∥∥∥
2

2

+ λ1

G∑
g=1

∥∥∥b(g)
∥∥∥

2
+ λ2‖b‖1

⎞
⎠.

(13)

C. Optimization Scheme

Given the separability of (13), the optimization problem can
be divided into intra-group sparse function optimization and
inter-group sparse function optimization. We, hence, solve this
problem by using block coordinate decent as follows.

1) Intra-group Optimization: The coefficients b are put into
groups and a group is updated while the coefficients of other
groups are fixed. Suppose that in group g, we have b(g ) =
(b(g)

1 , b
(g)
2 , . . . , b

(g)
ng )� and Ỹ(g) = [ỹ(g)

1 , ỹ(g)
2 , . . . , ỹ(g )

ng ]. Then
b(g) is obtained by solving the following optimization
problem:

arg min
b

⎛
⎝1
2

∥∥∥∥∥∥rg −
ng∑
j=1

ỹ(g)
j b

(g)
j

∥∥∥∥∥∥
2

2

+ λ1

G∑
g=1

∥∥∥b(g)
∥∥∥

2
+ λ2‖b‖1

⎞
⎠

(14)
where rg = t̃−∑

k �=g Ỹ(k)b(k) is the residual.

Check whether all elements in b(g) are zero, that is, whether
there are any candidate sample in Ỹ(g) chosen to reconstruct
t̃. Following the idea in [19] and [38], the necessary and suffi-
cient condition of vector b(g) = 0 is that the solution of equa-

tion (ỹ(g)
j )

�
rg = λ1 · vj + λ2 · wj fulfills |vj | ≤ 1 and ‖w‖2 ≤

1, where v = (v1 , v2 , . . . , vng ) and w = (w1 , w2 , . . . , wng ).
Hence we determine this by minimizing the following function
of v:

J(v) = (1/λ2
2)

ng∑
j=1

(
(ỹ(g)

j )
�
rg − λ1 · vj

)2

= ‖w‖22 (15)

with respect to |vj | ≤ 1. Suppose that Q(g)
j = (ỹ(g)

j )
�
rg /λ1 ,

the minimizer is

∧
vj =

⎧⎨
⎩
Q

(g)
j ,

∣∣∣Q(g)
j

∣∣∣ ≤ 1

sign(Q(g)
j ),

∣∣∣Q(g)
j

∣∣∣ > 1
. (16)

We compute J(
∧
v) following (15) and (16). In case that J(

∧
v) is

less than or equal to one, we have b(g) = 0 and the optimization
proceeds to calculate the coefficient of the next group.

2) Inter-group Optimization: In case that J(
∧
v) is greater

than one, it means that elements inb(g) are not all zeros. We need
to know which element b(g)

j is zero or nonzero. When b(g )
j equals

zero , the corresponding vj = sign(b(g)
j ) andwj = b

(g)
j /‖b(g)‖2

satisfy the criteria that |vj | ≤ 1 and wj = 0, respectively. Oth-

erwise, we calculate b(g)
j according to the following objective

function:

arg min
b

( g )
j

1
2

∥∥∥∥∥t̃−
ng∑
k

ỹ(g)
j b

(g)
j

∥∥∥∥∥
2

2

+ λ1

∥∥∥b(g)
∥∥∥

2
+ λ2

∥∥∥b(g)
∥∥∥

1
.

(17)
The first and the second term are differentiable convex func-
tions, and the third item is a separable penalty term. We em-
ploy the fast iterative shrinkage-thresholding algorithm (FISTA)
[43] to solve this optimization problem. The detail procedure is
shown in Algorithm 1. In this way, we get a sparse coefficient
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Algorithm 1: Sparse Group Lasso Algorithm

Input: template t, dictionary Y, atom group set {1, 2, . . . ,
G}, parameter α, λ1 and λ2

Output: coefficient vector b
1: Calculate t̃ and Ỹ, obtain the objective function in (13).
2: for g = 1→ G do

3: Calculate rg and
∧
vj , obtain J(

∧
v) according to (15).

4: if J(
∧
v) ≤ 1 then

5: b(g) ← 0 and go to step 18.
6: else
7: Go to step 9.
8: end if
9: for j = 1→ ng do

10: Calculate |vj | and wj .
11: if |vj | ≤ 1 and wj = 0 then
12: b

(g)
j = 0 and go to step 16.

13: else
14: Calculate b(g)

j according to (17) and the
FISTA algorithm.

15: end if
16: j ← j + 1.
17: end for
18: g ← g + 1.
19: end for
20: return b

matrix B = [b1 , . . . ,bM ] ∈ RN×M for every template in set
T = [t1 , . . . , tM ] ∈ Re×M .

IV. ISGL-BASED OBJECT TRACKING METHOD

To have a complete presentation of our proposed method, we
first give an introduction of the motion model based particle filter
and then present the observation model by employing the inverse
sparse group lasso model. Our template updating mechanism is
discussed in the end. The flowchart of our proposed tracking
algorithm is shown in Fig. 5.

A. Motion Model

Within the particle filter framework, the motion model follows
Gaussian distribution

p(Zτ |Zτ−1) = N (Zτ ;Zτ−1 ,Ψ) (18)

where Zτ is the state of target at frame τ , Zτ−1 is the state
of target at frame τ − 1, Ψ is the covariance matrix with the
elements on the diagonal line being the standard deviations for
location, scale, rotation and so on. For example, the standard
deviation for scale σθ dictates how the proposed ISGL algorithm
accounts for scale changes.

For each video, the frames are converted into grayscale im-
ages. A set of candidate regions Y = [y1 ,y2 , . . . ,yN ] are sam-
pled in the current frame based on the location of the target in
the previous frame, which are used as the dictionary atoms. The
atoms are put into G groups based on their similarity. In addi-
tion, M templates T = [t1 , t2 , . . . , tM ] in the previous frames

are extracted. Following the method in [4], a template set T
includes p object templates Tpos and q background templates
Tneg , which are the positive templates (target templates) and
the negative templates (non-target templates), respectively. The
candidate and template image regions are resized into a fixed
sized (32× 32 pixels) and reformatted into one-dimensional
vectors.

B. Observation Model

An observation model is used to calculate the likelihood of
each candidate sample to be the tracking result in the current
frame. We construct a sparse mapping table to measure the
likelihood. A good candidate is usually more similar to several
positive templates, which results in larger reconstruction coef-
ficients given the positive template set. On the other hand, a
candidate with larger coefficients in the negative template set
indicates a poor choice.

Putting the candidate set Y and template set T into the pro-
posed ISGL model in Section III-C, the sparse coefficient ma-
trix B = [b1 , . . . ,bp ,bp+1 , . . . ,bp+n ] ∈ RN×M is calculated
following Algorithm 1. The sub-matrix [b1 , . . . ,bp ] consists
of coefficients corresponding to the positive template set, and
the sub-matrix [bp+1 , . . . ,bp+n ] consists of coefficients corre-
sponding to the negative template set. For a candidate sam-
ple yi , the confidence is proportional to the element in set
(bi1 , . . . , bip) and inversely proportional to the element in set
(bi(p+1) , . . . , bi(p+n)).

To improve the discrimination of samples in the positive and
negative templates, we construct a distance weight matrix W ∈
RM×N using hash distance [9], the matrix is defined as follows:

W(ij) ∝ exp(−H(ti ,yj )) (19)

where H(ti ,yj ) represents the hash distance between the tem-
plate ti and the candidate yi . We employ the perceptual image
hashing method [44] based on discrete wavelet transformation
(DWT) since it compactly captures significant image charac-
teristics. It becomes apparent that the corresponding weight in-
creased gradually with decreasing the distance between sample
and template.

We combine the coefficient matrix B with the distance weight
matrix W, and get a sparse mapping table X as follows, in which
X = B� �W ∈ RM×N :

X=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 · · · x1N

...
. . .

...

xp1 · · · xpN

x(p+1)1 · · · x(p+1)N

...
. . .

...

x(p+n)1 · · · x(p+n)N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
x1,pos · · · xN,pos
x1,neg · · · xN,neg

]

(20)
where xi,pos and xi,neg are vectors which represent the dis-
crimination features of candidate samples in the positive and
negative templates respectively, where xi,pos = (xi1 , . . . , xpi)�

and xi,neg = (x(p+1)i , . . . , x(p+n)i)�.
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Fig. 5. Flowchart of the proposed tracking algorithm based on the inverse group sparse structure. It includes the process of dictionary atoms clustering, the
process of positive templates and negative templates extraction, the process of templates reconstruction, the process of sparse mapping table generation, the
following steps are to choose the best tracking result and update templates respectively.

Algorithm 2: ISGL-Based Object Tracking Method
Input: frame at time τ , previous target state Z∗τ−1 , template

set Tτ−1 , dictionary Y, parameter α, λ1 and λ2
Output: current target state Z∗τ , updated template set Tτ

1: Obtain G dictionary clusters of dictionary Y
by K-means algorithm.

2: Compute the coefficient vector b for each template set
by Algorithm 1, get the coefficient matrix B.

3: Calculate the weight matrix W according to (19), get
the Sparse mapping table X according to X = B�

�W.
4: Calculate the discrimination for each candidate, and

choose the optimal target state Z∗τ .
5: Update template set Tτ−1 to Tτ .
6: return Z∗τ , Tτ

The discrimination score for the candidate sample yi can be
calculated by the following equation:

disi =
∑

xi,pos−
∑

xi,neg (21)

where disi is the observation discrimination score of yi , dis =
(dis1 , dis2 , . . . , disN ) indicates the scores for all candidates.

A candidate sample with a larger positive score or a lower
negative score is more likely to be the target object, that is,
a good target candidate has a relatively high discriminative
score, whereas a bad candidate has a low one. The likeli-
hood of the sample yi being the target at state Zτ is com-
puted within the Bayesian framework for our observation model
p(Oi | Zτ ) ∝ disi . With the motion model and observation
model, the maximum a posterior (MAP) criterion is used to
select the best target observation by maximize p(Oi | Zτ ).

C. Update Strategy

The template set T consists of positive templates (target tem-
plates) and negative templates (background templates), so the
positive and negative templates are updated respectively. In
updating the positive templates, we modified the method by
Zhuang et al. [9] by employing hash distance to measure the
image similarity.

To update the negative templates, when the significant part of
the target object is occluded, error occurs in the tracking result.
At this time, target information is contained in the negative
templates if update continuously. To solve this problem, we
control the update of negative templates based on a threshold
ψ. Denote that the discrimination score of tracking result at
frame τ is d̂isτ , which is obtained by the score set disτ at
frame τ . Vτ denotes the variance of the discrimination score set
(d̂isτ−4 , d̂isτ−3 , d̂isτ−2 , d̂isτ−1 , d̂isτ ). In a stable tracking, the
change of discrimination is smooth. When interference occurs
in tracking, d̂isτ changes drastically. So if Vτ is greater than a
threshold ψ, the tracking of the current frame is interfered and
the negative templates remain unchanged; otherwise, they are
updated. Algorithm 2 summarizes our ISGL tracking method.

V. EXPERIMENTAL RESULTS

A. Experimental Setup and Evaluation Metrics

The proposed tracking method is implemented with Matlab
R2012a, and evaluated in a PC with Intel i5 CPU (3.20 GHz) and
16 GB memory. The parameters are empirically determined and
fixed for each test sequences as follows. We randomly selected
10 positive templates and 140 negative templates, and 300-600
candidate samples according to different experiment sequences,
the size of the warped image is 32× 32. In the optimization pro-
cess, the number of atoms cluster G is 6, both λ1 and λ2 are 0.04,
α is 0.03, the threshold η of positive template update is 0.35,
and the threshold ψ of negative template update is 0.15× 10−6 .
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Fig. 6. Precision and success rate of OPE for the top 10 trackers. The trackers are ranked by the performance score of precision and success. The precision is the
value at location error threshold of 20 pixels, and the success rate is the area-under-curve.

TABLE I
OVERALL PERFORMANCE SCORE OF THE TOP NINE TRACKERS IN TERMS OF PRECISION AND SUCCESS RATE

Overall performance ISGL KCF EBT SCM Struck DSSP DLT ALSA CSK

Precision 0.695 0.726 0.689 0.649 0.656 0.599 0.587 0.545 0.532

Success rate 0.502 0.505 0.532 0.499 0.474 0.440 0.436 0.434 0.398

The three best performances are indicated by different fonts.

The parameters are decided with cross validation and a detailed
analysis is presented in Section V-D.

To evaluate our tracking algorithm, we conduct experiments
with OTB dataset [45] against 20 tracking methods: Struck [3],
SCM [4], DSSP [9], CXT [12], CSK [13], ASLA [14], IVT
[20], MTT [21], SPT [22], DFT [23], MIL [25], L1APG [35],
LOT [46], IST [47], WLCS [48], CT [49], LSS [50], KCF [10],
EBT [11] and DLT [26]. The 50 sequences in OTB datasets
are tagged with 11 attributes including fast motion (FM), back-
ground clutters (BC), motion blur (MB), deformation (DEF),
illumination variation (IV), in-plane rotation (IPR), low resolu-
tion (LR), occlusion (OCC), out of plane rotation (OPR), out
of view (OV) and scale variation (SV), which cover the most
challenging factors in visual tracking.

The performance of our tracker is quantitatively evaluated
by precision and success under the one pass evaluation (OPE)
criterion. The OPE criterion used the ground truth object lo-
cation in the first frame for evaluation. The precision plot
demonstrates the percentage of frames which the distance be-
tween the tracked location and the ground-truth is within a
given threshold, and the tracker are ranked by the precision
score while the threshold equal to 20 pixels. Meanwhile, the
success plot is calculated by the overlap ratio [51], score =
area(RT ∩RG )/area(RT ∪RG ), where RT is the tracking
result area, and RG is the ground truth area. The success plot
means the percentage of frames where the overlap ratio is greater
than a threshold φ ∈ [0, 1]. The area under curve (AUC) [45] is
applied to rank the performance in success plot. For clarity, we
only present the top 9 trackers in each plot.

B. Quantitative Analysis

1) Overall Performance: The overall performance of the top
9 trackers in terms of success rate and precision is illustrated

TABLE II
SCORE OF PRECISION PLOT IN DIFFERENT ATTRIBUTES

Attribute LR SV MB DEF OV BC

KCF 0.379 0.680 0.589 0.702 0.649 0.752
ISGL 0.690 0.701 0.587 0.643 0.589 0.653

EBT 0.411 0.696 0.504 0.585 0.569 0.652

Struck 0.545 0.639 0.551 0.521 0.539 0.585

SCM 0.305 0.672 0.339 0.586 0.429 0.578
DSSP 0.458 0.560 0.474 0.581 0.206 0.567
DLT 0.396 0.590 0.453 0.563 0.444 0.495
CSK 0.411 0.503 0.342 0.476 0.379 0.585
ALSA 0.156 0.552 0.278 0.445 0.333 0.496

The three best performances are indicated by different fonts.

in Fig. 6 with respect to the location errors and overlaps. In
addition, the performance score is shown in Table I. Overall,
ISGL method performs favorably based on the OPE criterion.

In the precision plot in Fig. 6, the ISGL tracker achieves
an average precision score of 0.695, which outperforms sparse
representation based trackers including SCM, DSSP and ASLA.
The underlying reason for the performance improvement is that
the ISGL method integrates both group sparse constraint and
local structure constraint.

Note that the ISGL method employs the gray feature and
achieves comparable performance with the two best trackers
(EBT and KCF) that use much complicated HOG features. As
depicted in the Success rate plot in Fig. 6, ISGL outperforms
KCF and EBT in most overlap rates, which demonstrate the
superior robustness of our proposed method.

2) Attribute-Based Evaluation: The attributes (or cases) are
representative for analyzing the performance of the trackers in
handling different challenges. Tables II and III summarize the
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Fig. 7. Precision of sequences with different attributes in terms of the OPE criterion. The number of sequences in every attribute is marked in the panel title.

TABLE III
SCORE OF SUCCESS PLOT IN DIFFERENT ATTRIBUTES

Attribute LR SV MB DEF OV BC

EBT 0.334 0.529 0.424 0.443 0.498 0.496

KCF 0.310 0.427 0.465 0.511 0.550 0.533
ISGL 0.474 0.491 0.448 0.466 0.490 0.467

SCM 0.279 0.518 0.298 0.448 0.361 0.450

Struck 0.372 0.425 0.433 0.393 0.459 0.458

DSSP 0.331 0.388 0.374 0.440 0.201 0.417
DLT 0.346 0.455 0.363 0.394 0.367 0.339
ALSA 0.157 0.452 0.258 0.372 0.312 0.408
CSK 0.350 0.350 0.305 0.343 0.349 0.421

The three best performances are indicated by different fonts.

tracking results in terms of success and precision plots. Fig. 7
illustrates the precisions of the top 9 performers in six scenarios.
It is shown that ISGL demonstrates much superior performance
to the other methods in scenarios including low resolution, scale
variation, and motion blur. The precision of ISGL is improved
by an average of 31.1% and 27.9% in contrast to KCF and EBT
(the best performers in overall performance), respectively, in the
low resolution scenario. It performs highly competitively in the
other scenarios.

Fig. 8 illustrates the success rate with respect to overlap ratio.
As the overlap ratio increases, the success rate of all methods
decreases. Among the compared methods, the ISGL method
exhibits much improved performance, particularly in the low
resolution case. This is partially due to the inclusion of group
sparsity in the target evaluation as well as the inverse sparse
representation. In comparison with the CSK method, which
relies on the gray feature as used in ISGL method, ISGL clearly
demonstrates the advantage in robustness.

In Comparison with the sparse representation based trackers
(SCM, DSSP and ASLA), our ISGL method exhibits greater

performance in all cases. As shown in Figs. 7 and 8, our approach
demonstrates outstanding results in both precision and success
rate.

C. Qualitative Analysis

1) Heavy Occlusion: Occlusion is one of the most frequently
encountered problems in object tracking, the tracking results in
sequence Faceocc1 and Jogging1 are illustrated in Fig. 9(a) and
9(b). Our method enhanced adaptability to object tracking when
there exist heavy occlusions. It is noteworthy that our proposed
method locates the target successfully despite it is completely
obscured by a pillar for a period (#80) in sequence Jogging1.
As our template update scheme selectively updates the tem-
plates with adaptive learning, incorrect targets are abandoned
to prevent an inappropriate template. The target detected in the
initial frames is kept as a reference. Hence, the influence from
the occluded object is suppressed and the template sets are not
severely affected in the updating process.

2) Motion Blur: Fig. 9(c) and 9(d) show the tracking re-
sult in sequences Deer and Jumping with the almost illegible
appearance. Our proposed ISGL method outperforms the other
tracking methods, most of which exhibit a drift away and fail
to locate the target accurately. Our tracker exploits the group
sparsity constraint, which leads to an accurate representation
and increases the tracking performance.

3) Illumination Variation: Fig. 9(e) and 9(f) present the per-
formance of different tracking methods in the presence of dra-
matic light changes. Since we represent the templates with a
local structure constraint that reduces the reconstruction error,
the relationship between the template and the corresponding
samples is reinforced. A robust observation model is obtained
that enables adaptation to illumination changes.

4) Scale Variation: The targets in sequences CarScale and
Walking2 experience greater scale changes which are shown in
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Fig. 8. Success rate of sequences with different attributes in terms of the OPE criterion. The number of sequences in every attribute is marked in the panel title.

Fig. 9. Sampled results of the top 10 tracking algorithms in ten challenging sequences Faceocc1, Jogging1, Jumping, Deer, Car4, Singer2, CarScale, Walking2,
CarDark, and Soccer. The targets in these sequences undergo heavy occlusion, motion blur, illumination variation, scale variation, and background clutter,
respectively.
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Fig. 10. Overlap rate using different λ1 and λ2 values.

Fig. 9(g) and 9(h). As the application of affine transformation
in our method, different scaling particles are generated to be the
candidate samples, our method select an optimal sample in the
candidate sets with the same scale. By contrast, the methods in
[10] and [11] fail to adapt to the scale changes without the affine
transformation strategy.

5) Background Clutter: The sequences Soccer and CarDark
in Fig. 9(i) and 9(j) are challenging due to complex background
and poor illumination and contrast, which make it difficult to dis-
tinguish the target from the clutter. The templates of foreground
and background allow the tracker to compare the similarity (in
terms of the discrimination score) to the interested object. In ad-
dition, a discriminative mapping table is obtained by combining
the sparse coefficient matrix and distance weight matrix, which
enables improved precision.

D. Analysis of Parameters

Cross validation is used to choose the parameters using the
overlap rate [51]. We randomly selected 11 sequences with
different attributes from OTB database, which were used as
our validation datasets.

1) Intra-group and Inter-group Sparsity (λ1 and λ2): The
intra-group and inter-group sparsity are decided by λ1 and λ2 ,
respectively, as shown in (11). When λ1 is small, more simi-
lar samples are selected, which produces a reconstruction with
redundant samples. When λ1 is large, relevant samples could
be missed because the coefficients are over-sparse. Similarly,
λ2 adjusts the sparsity between groups. The average overlap
rate performance on validation datasets with various λ1 and λ2
are shown in Fig. 10. The overlap rate is color-coded with red
indicating higher values and blue indicating lower values. It is
clear that the best performance is achieved at λ1 = 0.04 and
λ2 = 0.04, which were used in the rest of our experiments.

2) Local Structure Constraint (α): In our objective func-
tion as shown in (11), α is the weight for the local structure
constraint. A small α could omit the contribution from the dif-
ference between the template and the atom, which results in a
degraded performance in terms of accuracy. Fig. 11 illustrates
the average overlap rate of our ISGL method on the validation

Fig. 11. Overlap rate using different α values.

Fig. 12. Overlap rate with respect to the number of clusters.

datasets with different α values. The greatest overlap rate is
achieved with α at 0.03.

3) Number of Clusters (G): An appropriate number of clus-
ters presents the plausible relevance of the samples. A large
or a small G results in a less representative group formation
and hence degraded tracking performance. In the extreme case
where a cluster consists of one sample, the group property is
completely disregarded. Fig. 12 depicts the overlap rate with
respect to the number of clusters on the validation datasets.
With a small number of clusters, the performance in terms of
overlap rate is very low. As G increases from 1, the overlap rate
increases as well as shown in Fig. 12. When G reaches 6, the
overlap rate is maximized, which yields the best performance.
There is a slight drop as we further increase G.

E. Analysis of ISGL With Different Configuration

In this section, we evaluate the effectiveness of differ-
ent components to detect their contributions. We propose
three variants of ISGL for comparisons: the ISGL_WOLS
method, the ISGL_WOWM method and the SGL method.
The ISGL_WOLS method exploits the inverse sparse group
lasso model without considering the local structure. The
ISGL_WOWM method is the ISGL algorithm without a refined
weight matrix W. The SGL method utilizes sparse group
lasso model instead of the inverse sparse group lasso model.
In addition, we include the DSSP algorithm, which represents
the method only exploits inverse sparse representation model.
The performance of DSSP method, our method and its variants
is illustrated in Fig. 13. The results demonstrate that without
considering the local structure, the score of precision rate
reduces by 3.1% and the AUC score of success rate reduces by
1.3%. Besides that, Fig. 13 depicts the precision and success
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Fig. 13. Precision plots and success plots of OPE for ISGL with different
configuration. The DSSP serves as the baseline performance.

curves of the ISGL method with and without a distance weight
matrix (denoted with ISGL and ISGL_WOWM, respectively)
with respect to various thresholds. As shown in the two
plots, ISGL outperformed ISGL_WOWM consistently. The
improvement is due to the refined coefficients by leveraging the
weight matrix. Meanwhile, the SGL method achieve a precision
score of 0.652 and an AUC score of 0.478, which implies that
the inverse sparse model improves the overall performance by
4% and 2.4% in terms of precision and success, respectively.

By making comparisons between DSSP and the variants of
ISGL method, we notice that all variants perform better than
the DSSP method. These results show that our proposed inverse
sparse group lasso model and the local structure information
played important parts in the ISGL algorithm for a robust visual
tracking.

F. Computational Cost

The most time-consuming aspect of our ISGL algorithm is in
the process of computing the sparse coefficients. The per-frame
complexity of ISGL is O(eM), where M is the number of
template and e is the dimension of the feature vector. Among the
methods in our comparison study, SCM and DSSP are the ones
that employ sparse representation, and both exhibit satisfactory
performance as shown in Fig. 6. The complexity of DSSP [9]
is O(eM) and the complexity of SCM [4] is O(eN), where N
is the number of samples. In practice, the number of templates
is less than the number of samples albeit they are usually in the
same order. Hence, the complexity of these methods is compa-
rable. The average frame per second (FPS) of SCM, MTT and
L1APG are 0.4, 1.0 and 2.4, respectively, whereas our method
processes 2.5 frames per second in average. This is superior to
the best performing and existing sparse tracker SCM.

VI. CONCLUSION

In this paper, we propose a robust tracking method based
on inverse sparse group lasso model, which combines the in-
verse sparse representation and the sparse group lasso model.
In our tracker, we integrate the inter-group and the intra-group
sparsity constraints that enable effective tracking of objects in
complex environments. Local structure between the templates
and samples ensure improved robustness and accuracy. In or-
der to improve the discrimination of coefficients on positive
and negative templates, hash distance is adopted to construct a

sparse mapping table for the selection of the optimal tracking
results. Moreover, the adaptive updating strategy reduces drifts
and accounts for varying appearance in dynamic scenes. The ex-
perimental results demonstrate that, under the disturbance such
as rotation, occlusion, scale change, and rapid movement, our
algorithm achieved greater accuracy and robustness compared
to the state-of-the-art methods.
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