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Automatic Feature Point Detection and Tracking of
Human Actions in Time-of-flight Videos
Xiaohui Yuan, Senior Member, IEEE, Longbo Kong, Dengchao Feng, and Zhenchun Wei

Abstract—Detecting feature points on the human body in video
frames is a key step for tracking human movements. There have
been methods developed that leverage models of human pose
and classification of pixels of the body image. Yet, occlusion and
robustness are still open challenges. In this paper, we present an
automatic, model-free feature point detection and action tracking
method using a time-of-flight camera. Our method automatically
detects feature points for movement abstraction. To overcome
errors caused by miss-detection and occlusion, a refinement
method is devised that uses the trajectory of the feature points
to correct the erroneous detections. Experiments were conducted
using videos acquired with a Microsoft Kinect camera and a
publicly available video set and comparisons were conducted with
the state-of-the-art methods. The results demonstrated that our
proposed method delivered improved and reliable performance
with an average accuracy in the range of 90%. The trajectory-
based refinement also demonstrated satisfactory effectiveness that
recovers the detection with a success rate of 93.7%. Our method
processed a frame in an average time of 71.1 ms.

Index Terms—Feature point, human pose detection, joint
detection, time-of-flight (ToF) videos.

I. INTRODUCTION

HUMAN action tracking enables a wide range of ap-
plications such as virtual personal trainer and accident

monitoring for elderly. In such a video-based tracking and
analysis system, the geometric feature points of a human
body, e.g., head, hands, feet, shoulders, and elbows, provide
characteristic abstraction of various poses. A key step to track
and recognize human movements is to automatically detect
these feature points from video frames.

Accurate detection of the feature points in video frames,
however, is a challenging problem when human subjects wear
no markers. There are methods developed to detect feature
points from videos of different modalities, e.g., range (or
depth) videos and infrared videos [1]. Range videos exhibit
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great advantage in comparison to visual and infrared videos.
Range videos are usually captured by depth camera, which
can calculate the distance between a certain point in its field
of view, and the camera itself. Different from the traditional
optical cameras, depth cameras acquire point cloud instead of
images made up with pixels. Each point in the point cloud
carries a depth value, which provides an extra dimension to
handle occlusions. The existing strategies for feature point
detection and movement tracking can be categorized as model-
based or model-free methods. In model-based methods, feature
points are identified by fitting a model to the acquired point
cloud [2]. Yet, difficulties arise from variations in human
figures and occlusions. Model-free methods (also known as
Data-driven methods), however, extract feature points from the
acquired data with few or no assumptions using image features
such as color and shape, which overcome the rigidness of using
a model but demand accurate detection of feature points [3].

In this article, we propose a model-free method for detect-
ing feature points from time-of-flight videos. Our proposed
method automatically detects the extreme points from the
three-dimensional point cloud of a human figure. The extreme
points are a subset of the feature points, which include the ends
of human body parts, i.e., head, hands, and feet. By initializing
with a head-shoulder template, shoulders are detected, which
serve as part of the references for the detection of the elbows.
In the process of tracking, trajectory of the feature points is
used to improve the precision of detection.

The contributions of this work is three-fold: first, a model-
free, automatic extreme point detection strategy is proposed,
which is robust to pose variations and occlusions; second,
an optimization method for extraction of joints based on
geometric constraints of human body parts is devised; third,
our tracking method integrates the trajectory of the feature
points for improved tracking precision.

The rest of this article is organized as follows: Section
II reviews the related work on feature point detection from
video frames and tracking of human movements. Section III
presents our method for automatic feature point detection and
action tracking. Section IV discusses our experimental results.
Section V concludes this paper with a summary and future
work.

II. RELATED WORK

There have been many studies on the detection of human
pose in real-time and tracking human movements. Landmark
detection, three-dimensional (3D) human body model fitting,
and pixel classification are mostly used strategies. In the
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methods that discover landmarks for tracking, the silhouette of
human body is usually treated as a graph where pixels within
the body are nodes and the immediate adjacency makes the
edges. Baak et al. [3] applied a modified Dijkstra’s algorithm
to identify the extreme points in the human body silhouette.
Furthermore, they also used Dijkstra’s algorithm to detect
extreme points and calculated the orientation of the extreme
points by back-tracking the searching path. Plagemann et al.
[4] used a body part identification method along with an
extreme point searching method, which extracted the shape
feature from data and classified them into body parts.

Landmarks give a rough description of a human pose. How-
ever, it is sometimes difficult to know the exact pose abstracted
by the landmarks. Hence, many landmark-based methods rely
on other sub-systems to provide additional information of
human poses. Fitting a 3D human body model is usually used
to estimate human poses. Baak et al. [3] developed a 3D
model fitting and a database lookup system. In this method,
a database of human poses was used to provide the closest
poses for selecting landmarks. The retrievals from the database
were used to compare with the results from the fitted 3D
model and the previous poses. The final result was generated
via a voting process. Handrich et al. [5] applied Dijkstra’s
algorithm to detect the extreme points. Because their focus
was on the upper body, the proposed method only searched
for the extreme points for hands and head, and a 3D skeleton
was used to detect shoulders and elbows. Schwarz et al. [6]
proposed a geodesic distance based algorithm to search for
the extreme points as the primary landmarks, and registered
a 3D skeleton model with the depth frames. Huang et al. [7]
developed a method that employs a 3D human body model
with cylindric body parts to fit with 3D point cloud from depth
camera. Ganapthi et al. [8] also used a 3D human body model
to fit into point cloud to estimate human poses.

Besides landmark detection, classification methods have
been applied to image pixels for body part identification. Wei
et al. [9] used classification method in their work to initialize
the system and reinitialized the system when failure occurred.
Shotton et al. [10] applied decision trees to classify each pixel
in a depth frame and calculated the probability of each pixel
for being part of a joint. However, classification based methods
demand high computation power.

In the detection of human poses and tracking of movements,
joints are commonly used to provide a more accurate abstrac-
tion of human body. Many methods have been proposed to
detect joints. When joints detection is required, a 3D human
body model fitting is usually used. Weng et al. [11] used
templates to detect body parts and applied a kinematic chain
on the body to locate joints. The pixel classification method
in [9] was used to determine the body parts and the location
of the joints. Then, an inverse kinematic chain method is used
to obtain the estimated human pose results.

III. METHODOLOGY

Our method consists of three key components: extreme
point detection, joint detection, and feature point refinement.
Fig. 1 illustrates an overview of the work flow. The time-
of-flight (ToF) videos are processed to extract the human

figure using background removal. Extreme points are then
automatically detected based on geometric properties of the
three dimensional silhouette. With a head-shoulder template,
shoulders are detected, which serve as part of the references
for the detection of elbows. The temporal locations of each
feature point are used to form a profile to make prediction of
its future location. This predicted location is then used as a
constraint for refining the feature point detection. In the rest
of this section, we present each component in detail.

Fig. 1. An overview of the work flow of our proposed method.

A. Background Removal
To extract the silhouette of human body, background needs

to be removed. Different from optical cameras, depth cameras
acquire the distance between objects to the camera rather
than the spectral information. Following the idea in [12], the
average depth at a pixel across a temporal range is used to
create a background model for human silhouette extraction. If
the object remains stationary, its depth value remains the same.
In reality, however, due to the presence of noise, the depth
value at a pixel varies slightly in a certain range even though
the scene remains unchanged. The following model is used to
describe the stationary objects that form the background:

pi,j =
N∑

n=1

pn
i,j

N
∀ pi,j ∈ B (1)

where pi,j is the depth value at a pixel location (i, j) of
background model B, pn

i,j is the depth value at a pixel location
(i, j) of the nth frame, and N is the number of frames used to
build the background model. For each pixel in the background
model, we calculate the average sum of the depth of all pixels
at the same position from the sample frames as its depth value.
When an object appears in a frame m, the depth value of
pixels in the area of the occluded background changes, and
the changes should be greater than a threshold T as following:

Pm = {pm
i,j ∈ fm| Mpm

i,j > T}
∀ pm

i,j ∈ fm and Mpm
i,j = pm

i,j − pi,j (2)

where Pm is the set of foreground pixels and M pm
i,j is the

difference between pixel pm
i,j in frame fm and pixel pi,j in

background model.
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B. Extreme Point Detection

The extreme points in a human silhouette include head,
hands, and feet. Without occlusion, five extreme points are
expected. The spatial distribution of extreme points roughly
represents the general information of human activities. To
simplify our explanation, we present our method in a 2D
scenario. However, it is straightforward to extend to 3D cases.

Let I denote a 2D binary image that contains a human
silhouette and the background. The background pixels are
zeros and the foreground pixels (i.e., human body silhouette)
are ones. Given a randomly selected point inside the silhouette,
denoted with E0, the geodesic distance between E0 and a point
is calculated as follows:

Dg(E0, I(x, y)) =
∑

‖I(xp, yp)− I(xq, yq)‖ (3)

where I(xp, yp) and I(xq, yq) are the nearest neighboring
points on the shortest route between E0 and I(x, y). A distance
map, denoted with M i, is created, where i, i = {0, 1, . . . , N},
is the iteration number. Hence, an extreme point is the one that
gives the farthest geodesic distance to the reference point E0:

Ei = arg max
I(x,y)

Dg(E0, I(x, y)). (4)

In search for other extreme points, (4) can be modified by
replacing E0 with the previously identified extreme point Ei

as follows:

Ei = arg max
I(x,y)

Dg(Ei, I(x, y)), i 6= 0. (5)

As the result, an updated distance map is generated.
Yet, to avoid repeatedly reaching the same farthest points on

the silhouette, when an extreme point is identified, its geodesic
distance to any existing extreme points is set to zero, i.e.,

∀Ei, Dg(Ei, Ej) ⇐ 0, i 6= j. (6)

Hence, for any newly identified extreme point, it must
exhibit the farthest distance to all the existing ones, which
is easily satisfied with (6).

The final updated distance map will take the minimum value
for each pixel among all distance maps M i:

M i(x, y) = min(M1(x, y),M2(x, y), . . . , Mn(x, y)). (7)

To handle self-occlusion, during the process of updating
the distance map M i, we compute the depth difference (i.e.,
z difference) between adjacent points (adjacent in the X-Y
plane). If the difference is less than a threshold δ, these two
points are considered as being on the surface of the same
body part; otherwise, they belong to different body parts,
i.e., occlusion occurs. In the case of occlusion, the occluded
surface is filled by interpolation. Hence, to update the geodesic
distance of a point, the neighboring points on the same body
part surface are used.

C. Joint Detection

1) Shoulders: Our method uses a head-shoulder (HS) tem-
plate to search the position of shoulders. A head-shoulder
template is to provide a consistent means for finding the
locations of shoulders. In the extreme point detection, head

and hands are identified. Ideally, when there is a prominent
curvature near the shoulders, the shoulders are easily detected.
However, in many poses, e.g., the upper arms being leveled
with the shoulders, there exist no distinctive marks to differ-
entiate the shoulders from the arms. The template is hence
useful to estimate the locations of the shoulders. To obtain the
HS template, an initialization pose is used, the silhouette of
which is shown in Fig. 3 (a).

Fig. 2. (a) An example of a distance map for one extreme point. (b) An
example of updated distance map (in the 4th iteration). The extreme points
on limbs are detected and their distance value is set to 0, the extreme point
of head has been calculated (brightest pixel).

Fig. 3. Head-shoulder template. (a) Example pose. (b) Head-shoulder tem-
plate captured from the pose in (a).

This initialization pose is used to invoke the detection
method and to capture the head-shoulder (HS) template. If
the pose of the human subject matches the initialization pose,
the silhouette of the head and shoulders are captured and used
as the HS template. The similarity of two objects A and B is
calculated as follows:

S(A,B) =
7∑

i=1

|mA
i −mB

j | (8)

where

mA
i = sign(ηA

i )× log ηA
i

mB
j = sign(ηB

j )× log ηB
j
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and ηA
i , ηB

j are Hu moments [13] of objects A and B, respec-
tively. Seven moments are used to compute the similarity to
the template. An example of the head-shoulder (HS) template
is shown in Fig. 3 (b).

The distance between the two shoulders is estimated by
calculating the average width of the torso. With the HS
template, shoulders are detected. After locating the position
with the greatest similarity in the current frame, a bounding
box is used to locate the shoulders. The two bottom corners
of the bounding box are proposed as the shoulder positions.
However, when a proposed shoulder position falls into the
background (a side bend posture), a nearest foreground point is
located and used as the updated shoulder position. An example
is shown in Fig. 4. The position of the extreme point, which
represents the head, is refined by this HS template.

Fig. 4. Detection of shoulders. The green dot marks the left shoulder. The
yellow circle marks the proposed location of the right shoulder. However,
since the proposed location is in the background, a nearest foreground point
is identified as the proposed location of the right shoulder, as depicted by
yellow dot.

2) Elbows: Identifying the joints improves the accuracy
of tracking body movements. Body joints, however, vary
from person to person, and depend on the perspective of
the imaging device even without occlusion. The intuition of
treating the geometric mid-point as the joint location gives a
rough estimation; yet, it could be far off as shown in Fig. 5 (b),
in which the ideal joint locations are marked with red circle.
In Fig. 5 (a), the mid-point between two feature points (in red
dots) is a good estimation of the joint; yet, in Fig. 5 (b), the
joint is much farther away from the tip of a hand.

When a joint is visible, e.g., in a bent arm, the geodesic
distance between two extreme points is greater than their
Euclidean distance:

Dg(Ei, Ej) > De(Ei, Ej) (9)

where De(·) denotes the Euclidean distance. This can be
generalized to any two points on the distinct sections of a
body part, e.g., forearm and upper arm. Given that each limb
section is rigid and approximately straight, the joint point must
satisfy the following relation:

Dg(Ei, Ê) + Dg(Ê, Ej) = De(Ei, Ê) + De(Ê, Ej) (10)

s.t. min
X

[Dg(Ei, X) + Dg(X, Ej)−
De(Ei, X)−De(X, Ej)] (11)

where Ê is the ideal point for joint location. Given the width of
silhouette, there are more than one point that satisfies (10). To
break the tie, the one that gives the shortest geodesic distance
is used.

Fig. 5. The geometric properties of joint and extreme points vary according
to the imaging perspective. The red dots mark the extreme points and the
circle marks the joint location. (a) front view and (b) angular view of the
human body. When the human body turns sideway, the geometric properties
of the joint and extreme points change.

To find the ideal joint location, an iterative search method is
proposed. Our objective function is to minimize the difference
between the total geodesic distance between two extreme
points through the joint point. According to the updated dis-
tance map, the geodesic distance between hand and shoulder
will not be changed during the iterative search. Thus, the goal
of the iterative search is changed to maximize the Euclidean
distance between a hand and the corresponding shoulder. To
avoid the searching result going too far outside the arm region,
the joint point must be in a distance to the corresponding hand
or shoulder:

Ê =
∑

k

Dg(Ek, Ê)−
∑

k

De(Ek, Ê)

s.t. max
X

[De(Ei, X) + De(X, Ej)]. (12)

Fig. 6 illustrates a scenario of finding the elbow in an arm.
The feature points and the ideal joint point are marked with
red dots. The estimated joint location X in the current iteration
is marked with a red circle.

D. Feature Point Refinement Using Trajectory
When occlusion occurs or there exists a significant amount

of noise, detection of feature points could be very difficult.
To avoid failure of detection or missing feature points due
to occlusion, we keep track of the trajectory of each feature
point to predict its most likely spatial location in the next
frame. The predicted location is used as a constraint in our
detection. That is, a feature point shall lie in the vicinity of
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the predicted location based on its historical trajectory. Our
refinement process consists of three components: feature point
correspondence, location prediction, and verification.

Fig. 6. An example of finding the elbow in an arm.

Fig. 7. An example of a searching pattern for an elbow point under self-
occlusion situation.

In a feature point detection method, the order of the detec-
tion of feature points varies from frame to frame. Thus, the
correspondence of feature points between two adjacent frames
must be found so that they are tracked correctly in a video.
Due to the continuity of human motion, the corresponding
feature points have very small changes in position between
two adjacent frames. Hence, we impose the minimum distance
constraint in the correspondence identification:

pn
j = arg min

j

∑
D(pn−1

i , pn
j ) (13)

where pn−1
i is the ith feature points in frame fn−1 and pn

j is
the jth feature points in frame fn. D(pn−1

i , pn
j ) calculates the

spatial distance between the feature point pn−1
i and a feature

point pn
j in frame fn. In case where more than one extreme

point in frame fn satisfies the above constraint, a mutual
exclusive method is used to decide the points as follows:

arg
k,h

min
∑

D(pn−1
k , pn

h) (14)

where pn−1
k represents the extreme point in frame fn that

has same correspondence point in frame fn−1 with another
extreme point in frame fn. pn

h represents the extreme point
from frame fn−1, which is put into correspondence with
multiple points in fn or not in correspondence with any point
at all. When unresolved correspondence exists, the predicted
result based on the point trajectory is used instead.

To predict the likely location of an extreme point, its
positions in the previous frames are used following a linear
extrapolation method as follows:

p̄n+1
i = pn

i + Mpn−1
i

Mpn−1
i = pn

i − pn−1
i (15)

where pn
i represents the position of the ith feature point in

frame fn and p̄n+1
i represents the predicted position for the

ith extreme point in frame fn+1.
The predicted position based on trajectory may not coincide

with the detected one based on the geodesic distance. To
refine the position of the feature points, a searching window
centered at the predicted position is used. The size of this
search window depends on the velocity of the feature point.
If the detected feature point is outside the search window, the
detection is considered as erroneous and is hence replaced with
the predicted position or a nearest foreground point around the
predicted position. The size of the search window is defined
as follows:

r = α(pn
i − pn−1

i ) (16)

where α characterizes the velocity of the feature point.
Fig. 8 depicts examples of the refinement of hands’ images.

The top panel visualizes the depth image in false color and the
bottom panel shows the human silhouette with hands marked
with circles where the center of the circle represents the hand.

Fig. 8. Tracking result of a hand. The top panels show the visualized depth
image. The bottom panels show the human silhouette and the location of
the hand. The red circle represents the current position, and the blue circle
represents the position in the previous frame.

Algorithm 1 summarizes the steps of our method. Note
that the auxiliary data structures, e.g., the one for computing
trajectories of feature points, are implicitly expressed in this
algorithm.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate our method, we acquired 10 videos using the
second generation Microsoft Kinect and used the SMMC-10
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Algorithm 1 Tracking with automatic feature point detection

1. Construct a background model B following (1).

2. for each video frame do
3. Remove background from a video frame using B and (2).

4. Detect the extreme points E from the point cloud of human figure

following (5).

5. Detect the joints using the extreme points E following (10).

6. Find the correspondence of the feature points between two adjacent

video frames following (13).

7. Refine the feature point detection by applying the spatial constraint

described in (15).

8. end for.

data set [8]. In the videos we acquired, each frame is of a
resolution of 512 × 424 pixels and the frame rate is 30 fps.
Our videos contain various human poses and actions such as
walking, kicking, turning, waving hands, and jumping. There
are 8 males and 2 females in our video sets with different
body shapes. The SMMC-10 data set consists of 28 real-world
depth video clips, which was acquired with a Mesa Swiss-
Ranger Time-of-Flight camera at a frame rate of 25 fps and a
resolution of 176×144 pixels. Each video clip contains human
actions such as limb motions, kicks, swings, self-occlusions,
and full body rotations. We manually prepared the reference
frames to evaluate the accuracy of the feature point detection
and tracking. In our evaluation, if a feature point is within
6 cm to the reference point and located inside the body part,
the detection is considered correct.

A. Accuracy of Feature Point Detection and Tracking
Fig. 9 illustrates examples of the results from our method

using two sets of videos. The feature points detected from
the video frames are marked with circles in different colors.
These exemplar frames show various poses including rotating
the body (the first and second rows in columns (a) and (b)),
kicking (the last row in columns (c) and (d)), standing on one
foot (the second row in columns (c) and (d)), and squatting
(first row of columns (c) and (d) and last row of columns
(a) and (b)). It is clear that all feature points were correctly
detected with excellent precision.

To evaluate the accuracy of our method, we compared the
detected feature points against the hand-marked references
using the videos we acquired with Kinect. Table I lists the
overall average accuracy for detecting feature points.

TABLE I
OVERALL AVERAGE ACCURACY (%)

Feature Head Shoulder Elbow Hand Foot

points left right left right left right left right

Accuracy 84.7 95.1 91.7 68.4 69.0 82.3 85.3 96.6 96.3

Among all feature points, detection of shoulders and foot
achieved the greatest accuracy in the range of upper 90%.
The detection of head and hands is also satisfactory, which
is in the range of upper 85%. The detection of elbows is
difficult because arms are straight in many frames and the
geometric property of the hand-elbow-shoulder is insignificant

to differentiate the feature points. In addition, the detection of
elbow is based on the detected hands and shoulders. The errors
of hand/shoulder detection are hence inherited to the elbow
detection. In cases when a hand is occluded, the location of
elbow can only be estimated from the trajectory. The relative
low accuracy of head is due to the existence of several equally
distant points in the detection process and random selection
was applied. The usage of head-shoulder template helped to
stabilize the feature point of the head. The overall accuracy of
detection of all feature points is 85.5%.

Fig. 9. Exemplar frames and the results from our method. Column (a) shows
the frames from the videos of our collection and column (b) shows the results
of the detected feature points. Column (c) shows the frames from the videos
of SMMC-10 and column (d) shows the results of the detected feature points.

In our experiments, we compared the accuracy of feature
point detection with and without occlusion. Fig. 10 shows a
bar plot of accuracies of these two situations. The detection
of both shoulders and feet demonstrated the greatest robustness
whereas the detection of hands and elbows faced performance
degradation when occlusion occurred. Our justification of the
cause of performance drop for hands and elbows is that in
many cases when an arm is in front of the body and hence
caused partial occlusion, the distance between the surface of
the arm to the body is below the threshold δ used to avoid
occlusion, which induced error in computing the geodesic
distance. Making this threshold greater or smaller results in
different types of errors. When the threshold is small, a body
part that is along the sight of the imaging device could be
treated as different part. When it is set to much greater, the
occlusion is not detected and hence the geodesic distance could
be erroneously shortened. Based on our empirical evaluation,
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Fig. 10. A comparison of the average accuracy of feature point detection in the presence of self-occlusion (light bars) and without (dark bars).

a reasonable threshold is 4.5 cm.
We compare our method with the latest version of Microsoft

Kinect SDK. Fig. 11 depicts a comparison of results from
our method with those from the SDK. The left panels show
our results and the right ones show results from the SDK.
Fig. 11 (a) shows a pose that was correctly detected by both
methods. Yet, the detection results of the elbows by the SDK
were far off the correct locations. Fig. 11 (b) shows a case
where the left elbow was completely missed by SDK. In
contrast, our method correctly located the elbows in both
cases.

Fig. 11. A comparison with Microsoft Kinect SDK. Left: results from our
method; Right: results from Microsoft Kinect SDK.

We examined the stability of the detections. Fig. 12 shows
a set of frames when a human stands still. The joint position
in the results of the SDK varied from frame to frame. The
left elbow had significant changes. When the video is played
in real-time, the detected elbows were constantly shaking.
In contrast, our method delivered more stable results. It is
demonstrated that our method delivers more stable detections.
Using SMMC-10 data set, we compared the accuracy of our
method with that of the methods by Ganapathi et al. [8] and
Kim and Kim [14]. Fig. 13 shows the average accuracy of

detecting feature points in video frames. In the detection of
head, shoulders, and feet, all methods performed well. The
average accuracies of these three categories are 99%, 96%,
and 98.2% for our method, method by Ganapathi et al. [8]
and method by Kim and Kim [14], respectively. The accuracy
in detection of hands by our method is significantly better than
the others and the average accuracies are 97.7%, 75.6%, and
89.5%. In contrast to the second best performer, our method
improved the accuracy by 9%. In the detection of elbows, our
method achieved a competitive accuracy at 88.7%. The best
average accuracy by Kim and Kim [14] is at 94%.

Fig. 12. Stability comparison with Microsoft Kinect SDK. Ten frames are
split into two rows. The top panel in each row depicts results from the SDK
and the bottom row depicts results from our method.

Using SMMC-10 data set, we compared the accuracy of
our method with that of the methods by Ganapathi et al. [8]
and Kim and Kim [14]. Fig. 13 shows the average accuracy
of detecting feature points in video frames. In the detection
of head, shoulders, and feet, all methods performed well. The
average accuracies of these three categories are 99%, 96%,
and 98.2% for our method, method by Ganapathi et al. [8]
and method by Kim and Kim [14], respectively. The accuracy
in detection of hands by our method is significantly better than
the others and the average accuracies are 97.7%, 75.6%, and
89.5%. In contrast to the second best performer, our method
improved the accuracy by 9%. In the detection of elbows, our
method achieved a competitive accuracy at 88.7%. The best
average accuracy by Kim and Kim [14] is at 94%.
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Fig. 13. A comparison of accuracy in feature point detection using SMMC-10 data set.

B. An Evaluation of Feature Point Refinement
To evaluate the robustness of our refinement method, we

repeated the experiments with and without the refinement
process based on the trajectory of the feature points. Fig. 14
shows exemplar cases of the refinement results. The green
circle marks the initial detection of a body part and the
yellow circle marks the refinement result. In these cases, the
refinement successfully recovered the correct feature points.

Fig. 14. Feature point refinement.

Fig. 15 shows the average accuracy of detection of different
feature points with and without trajectory based refinement.
The light shade bars are the average accuracy produced by our
method with the refinement component; the dark shade bars
are the average accuracy produced by our method without the
refinement component. It is clear that the refinement process
improved the accuracy and the overall improvement was
2.77%. The accuracy of shoulder detection was least affected
whereas the accuracy of elbows was improved by 6.69% on
average. The accuracy of feet detection had little improvement
because there are very few frames showing complicated foot
movement (e.g., stepping, jumping, and kicking). In cases
when a refinement was used, the success rate of identifying
the correct feature point is 93.7%.

C. Efficiency Analysis
Our method was implemented with C++ and the exper-

iments were conducted on a computer with an Intel dual
core CPU at 3.4 GHz and 8 GB RAM running Windows 8.1.
Table II lists the average processing time of each body part as
well as a whole frame. The numbers within the parenthesis are
the standard deviation. The overall average processing time for
a frame was 71.1 ms, which is sufficient for processing real-
time videos. The processing time for each component shows
that detecting shoulders and the extreme points consumed most
time. This is due to the calculation of the geodesic distance
and searching for the shoulder points. Detecting elbows and
refinement using trajectory is much faster.

TABLE II
FRAME PROCESSING TIME IN MILLISECOND

Steps Ext. Pt. Shoulder Elbow Refinement Overall

Time 35.7 40.0 1.3 2.1 71.1

STD (12) (9.3) (1.0) (0.8) (2.0)

V. CONCLUSION

We present a model-free method for detecting feature points
from time-of-flight videos. Our method automatically detects
the extreme points from the three-dimensional point cloud
of a human figure based on geometric properties of the
three dimensional silhouette. With a head-shoulder template,
shoulders are detected, which serve as part of the references
for the detection of elbows. The temporal locations of each
feature point are used to form a profile to make prediction of
its future location. This predicted location is then used as a
constraint for refining the feature point detection.

The experimental results demonstrated that our proposed
method achieved improved accuracy in comparison to the
state-of-the-art methods including Microsoft Kinect SDK,
methods by Ganapathi et al. [8] and Kim and Kim [14].
The overall accuracy of the feature point detection is 85.5%
based on our time-of-flight videos and 94.4% based on the
SMMC-10 video set. In the presence of occlusion, our method
demonstrated exceptional robustness for all the extreme points
and shoulder joints. The trajectory-based refinement also
demonstrated satisfactory effectiveness that can recover the
detection with a success rate of 93.7%. Our method processed
a frame in an average time of 71.1 ms. In our experiments, we
observed that our method fails when body parts are invisible
for a relatively long period. For instance, when a hand is
occluded by the torso, our method resulted in an incorrect
detection. We also found that the data acquired by depth
cameras could be contaminated with noise from multi-path
scattering, which appear as disproportionate measurements.

In our future work, we plan to improve joints’ detection and
address issues from complete occlusion of body parts for an
extended period. The strategy for updating the distance map
could be optimized as well. We currently update every node in
the human body graph in four-neighbor iteration, which may
cause error of feature point drifting.
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Fig. 15. Average accuracy of feature points with (light shade bars) and without (dark shade bars) the refinement component.
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