
410 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 4, NO. 3, JULY 2017

Recent Advances in Image Dehazing
Wencheng Wang, Member, IEEE, and Xiaohui Yuan, Member, IEEE

Abstract—Images captured in hazy or foggy weather conditions
can be seriously degraded by scattering of atmospheric particles,
which reduces the contrast, changes the color, and makes the
object features difficult to identify by human vision and by some
outdoor computer vision systems. Therefore image dehazing is
an important issue and has been widely researched in the field
of computer vision. The role of image dehazing is to remove
the influence of weather factors in order to improve the visual
effects of the image and provide benefit to post-processing. This
paper reviews the main techniques of image dehazing that have
been developed over the past decade. Firstly, we innovatively
divide a number of approaches into three categories: image
enhancement based methods, image fusion based methods and
image restoration based methods. All methods are analyzed
and corresponding sub-categories are introduced according to
principles and characteristics. Various quality evaluation meth-
ods are then described, sorted and discussed in detail. Finally,
research progress is summarized and future research directions
are suggested.

Index Terms—Atmospheric scattering model, image dehazing,
image enhancement, quality assessment.

I. INTRODUCTION

UNDER bad weather conditions, such as fog and haze, the
quality of images degrades severely due to the influence

of particles in the atmosphere. Suspended particles will scatter
light and result in attenuation of reflected light from the scene
and the scattered atmospheric light will also mix with the
light received by the camera and change the image contrast
and color. Fig. 1 shows a comparison between a haze-free
image and a hazy image. It can be seen from Fig. 1 (a) that
the scattered light due to the haze greatly reduces the image
contrast, and the image color appears dull compared to Fig. 1
(b).

Therefore, it is necessary for computer vision systems to
improve the visual effects of the image and highlight image
features. Image dehazing technique, also known as “haze
removal” or “defogging” is just the technique to reduce or
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even remove interference due to haze by special approaches, in
order to obtain satisfactory visual effects and obtain more use-
ful information. In theory, image dehazing removes unwanted
visual effects and is often considered as an image enhancement
technique. However, it differs from traditional noise removal
and contrast enhancement methods since the degradation to
image pixels that is induced by the presence of haze depends
on the distance between the object and the acquisition device
and the regional density of the haze. The effect of haze on
image pixels also suppresses the dynamic range of the colors.

Fig. 1. Comparison between hazy image and hazy free image.

The development of image dehazing methods has been
beneficial to many real-world applications, including video
assisted transportation [1]−[4], outdoor video surveillance
[5]−[10], analysis of remote sensing imagery [11]−[17], and
driver assistance systems [18]−[27]. These techniques can also
be transferred to underwater image enhancement [28]−[33]
and images acquired in rain or snow [34]−[39]. Bissonnette
made early efforts to improve the quality of images acquired
in foggy and rainy conditions [40]. The broad prospects for
applicability have attracted much attention from researchers
and it has become a research hotspot in computer vision and
image processing fields in recent years. According to statistics
on literature in English, the number of papers on this subject
has increased every year. Fig. 2 displays the number of related
papers in English searched by Google Scholar from 2000 to
2014 (blue solid line) and the number of papers published by
famous international conferences (red dotted line).

Fig. 2. Quantity of papers published in recent years.
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Although a large number of image dehazing methods have
been proposed, the research is still scattered and a complete
theoretical system has still not been established. In particular,
there is a lack of systematic summary of the advances in
related work until now [41]. Therefore, it is necessary to sum-
marize the development of image dehazing methods in the last
decade. This paper provides an extensive review of the recent
advances of image dehazing techniques and related methods.
To facilitate a comprehensive overview, existing techniques
are categorized based on their principles and characteristics.
In addition, various quality evaluation methods are described
and discussed in detail, and research progress is summarized
and future research directions are suggested. In this paper, we
try to elaborate on existing image dehazing methods including
application characteristics, dehazing performance, algorithm
complexity and other aspects.

The remainder of this paper is organized as follows. Section
II introduces the dehazing methods according to their classi-
fication in Fig. 3 and their principles and characteristics are
analyzed in detail. In Section III, related quality assessment
criteria of dehazing algorithms are described. Finally, a sum-
mary of conclusions is given and future research directions are
suggested in Section IV.

II. CLASSIFICATION OF DEHAZING ALGORITHMS

Based on differences in dehazing principles, current meth-
ods can be divided into three categories: image enhance-
ment based methods, image fusion based methods and image
restoration based methods. Image enhancement based methods
do not take the cause of the image degradation into account,
but mainly use targeted image processing methods to improve
the contrast and details, and improve the visual effects of the
image. Image fusion based methods maximize the beneficial
information from multiple source channels to finally form a
high quality image, without requiring a physical model. Image
restoration based methods establish a foggy image degrada-
tion model by studying the physical mechanisms of optical
imaging, invert the degradation processes and compensate for
distortion caused by these degradation processes in order to
obtain clear images without haze. Each of the above three
categories can also be sub-divided into different subclasses,
and some of these algorithms can be extended for video
dehazing. All of the main categories are described in Fig. 3.

A. Image Enhancement Methods

Image enhancement based methods are not required to
solve the physical model of image degradation, but rather
directly enhance the image contrast and improve the image
quality from the perspective of human visual perception. These
methods mainly include histogram equalization, the Retinex
method and frequency domain enhancement.

1) Histogram Equalization
Histogram equalization is a basic algorithm for low contrast

images. In a hazy image, the layer of “haze” will result in
a narrow range of grayscales, and the contrast is decreased.
Through histogram equalization processing, the entire range of
gray values are distributed uniformly across a higher dynamic

range, to improve the image contrast and enhance the details
of the image. In other words, histogram equalization enhances
the overall contrast of a hazy image by increasing the dynamic
range of the gray values. An example is shown in Fig. 4: (a)
is a hazy image, (b) is the histogram of (a), (c) is the dehazed
image from (a), and (d) is the histogram of (c).

Fig. 3. Classification of image dehazing methods.

Fig. 4. Dehazing with histogram equalization.

Depending on the difference in the computing region,
histogram equalization can be divided into global histogram
equalization (GHE) and local histogram equalization (LHE).

GHE uses the cumulative distribution function as the trans-
formation curve of the gray values. Suppose variables r and
s are the grayscales of the original image and the processed
image, respectively; Pr(r) is the probability of r; L is the
maximum grayscale value; n is the sum of the pixels in the
image; nj is the number of the jth grayscale. Then, the
histogram equalization can be expressed as:

s = T (r) =
k∑

j=0

Pr(rj) =
k∑

j=0

nj

n
, k = 0, 1, 2, . . . , L− 1.

(1)
The advantage of GHE is that it has lesser computations

with a high efficiency and is particularly suitable for the
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enhancement of images that are too dark or bright overall.
It is usually used to compress the brightness of pixels to
obtain more uniform exposure characteristics [42]. However,
the algorithm’s gray statistics across the whole image make it
difficult for each local area to restore the optimal values since
the method cannot adapt to the local brightness characteristics
of an input image, and often causes a “halo” effect and
brightness distortion. Therefore, some scholars have proposed
a local histogram equalization algorithm to solve this problem
which has been widely used.

LHE extends the histogram equalization algorithm to all
local regions of the image, and adaptively enhances local
information of the image by local operations. It is suitable for
processing a hazy image with low contrast and a changeable
depth of field, but block effect usually appears and the calcula-
tion complexity is large. Local histogram equalization methods
have been proven to provide better performance than global
methods and reveal more local image details with stronger
image enhancement performance [43]−[45].

Some optimized methods will now be described. Reference
[46] used adaptive histogram equalizations (AHE) for contrast
enhancement while [47] used partially overlapped sub-block
histograms to enhance the contrast. Huang et al. [48] have
proposed a novel local histogram equalization algorithm which
had good performance for improving the contrast of the image
while preserving the brightness. Xu et al. [49] have estab-
lished a generalized equalization model that integrates contrast
enhancement and white balancing into a unified framework
for convex programming of the image histogram. In [50],
histogram equalization and a wavelet transform (WT) method
are combined to enhance images, which can improve the
gray distribution of images. Xu et al. [51] have proposed
a contrast limited adaptive histogram equalization (CLAHE)
method to remove the effects of fog, which can limit noise
while enhancing the image contrast. In [52] combined the
CLAHE method with the Weiner filter and [53] combined
the CLAHE method with the finite impulse response filter to
enhance the contrast of images.

In summary, the histogram equalization algorithm can
achieve better performance for gray images than for color
images, and can lead to noise amplification in some hazy
images.

2) Retinex Method
Retinex, i.e., retinal cerebral cortex theory, was created by

Land and McCann based on color perception by the human
eyes [54], [55]. Retinex-based algorithms have been widely
applied in the field of image enhancement for applications such
as shadow removal and haze removal. Its principal concept
is to obtain the reflection properties of objects from the
influence of light on the image, and it provides a model
for describing the color invariance. The concept is based
on the fact that during visual information transmission, the
human vision system performs some information processing
to remove the uncertainty related to the light source’s intensity
and irradiation, and only information reflecting the nature of
the object, such as the reflection coefficient. The model of
illumination reflection is shown in Fig. 5 and (2), which show
that an image can be expressed as a reflection component and

an illumination component.

Fig. 5. The model of illumination reflection.

F (x, y) = R(x, y)I(x, y) (2)

where R(x, y) is the reflection component, which represents
the reflection of the surface of an object and is related to
the intrinsic nature of the image, I(x, y) is the illumination
component, which depends on the ambient light and is related
to the dynamic range of the image and F (x, y) is the captured
image. Based on Retinex theory, if a method can be found
to estimate and separate the reflection component from the
total light, the impact of the illumination component on the
image can be reduced, achieving the goal of enhancing the
image. The Retinex algorithm has the characteristics of color
constancy, dynamic range compression and color fidelity, and
its workflow is shown in Fig. 6, where log is a logarithmic
operation and exp is an exponential operation.

Fig. 6. Workflow of the Retinex method.

The Retinex method used for enhancement of hazy images
can be divided into two categories: single-scale Retinex (SSR)
and multi-scale Retinex (MSR).

An SSR algorithm has been proposed by Jobson et al.
[56] based on the center/surrounding Retinex method. The
essence of this algorithm is to obtain the reflection image by
estimating the ambient brightness. In order to keep a good
balance between the dynamic range compression and the color
constancy, Rahman et al. [57] extended the SSR algorithm to
multiple scales and proposed an MSR algorithm.

Since the reflection image has little dependence on the
intensity of the illumination, the Retinex algorithm can easily
realize image dehazing. The formulas for SSR and MSR can
be expressed by (3) and (4), respectively.

ri(x, y)= log Ri(x, y)
= log Fi(x, y)− log[G(x, y) ∗ Fi(x, y)] (3)

rMSRi(x, y)
= log Ri(x, y)

=
N∑

k=1

wk{log F i(x, y)−log[Gk(x, y)∗Fi(x, y)]} (4)

where F (x, y) is the input image, ri(x, y) is the output of
the Retinex, R(x, y) is the reflection image, i is the color
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channel, (x, y) is the position of a single pixel, ∗ represents
the convolution operator, N is the number of scales, G(x, y) =
e−(x1+y2)/c2

is the low-pass convolution surrounding function,
wk is the weighted coefficient, and c is the Gauss surrounding
scale.

The algorithm combines the advantages of different Gaus-
sian functions convolved with the original image, including
the characteristics of large, medium and small scales, and can
achieve high dynamic range compression and color constancy
for better visual effects.

However, since Gaussian filtering does not have good edge
preservation performance, the phenomena of edge degradation
and “halo” artifacts will appear in the dehazing result. In
order to solve these problems as much as possible, Xu et
al. [58] estimated the illumination values by using a mean
shift smoothing filter to overcome the uneven illumination and
eliminate the halo phenomenon. Yang et al. [59] presented an
adaptive filter which combined sub-block local information
to estimate the luminance component. Hu et al. [60] used
bilateral filtering to replace Gaussian filtering to estimate
the illumination component. In [61], a novel Multi-Scale
Retinex color image enhancement method has been proposed
to enhance the contrast and better preserve the color of the
original image. In this method, the orientation of the long axis
of the Gaussian filter is determined according to the gradient
orientation at that position. Shu et al. [62] also proposed a type
of MSR algorithm based on sub-band decomposition for image
enhancement. Fu et al. [33] proposed a variation framework
for Retinex to process the reflection and the illumination from
a single underwater image by decomposing, enhancing and
combining after color correction. Zhang et al. [63] adopted
an improved Retinex-based method to remove fog in a traffic
video. Experimental results showed that the proposed method
can not only remove the fog but also enhance the clarity of
the traffic video images.

The advantages of the Retinex algorithm are clear and
easy to implement. These methods can not only increase the
contrast and brightness of the image, but also can regulate the
dynamic range of the gray level with a priority given to color
image dehazing. However, the algorithm uses the Gaussian
convolution template for illumination estimation and does not
have the ability to preserve edges, which will lead to halo
phenomena in some sharp boundary regions or cause the whole
image to be too bright.

3) Frequency Domain Filtering
Under foggy conditions, the low frequency components of

an image are enhanced, so a high-pass filter can be used for
image filtering to suppress low frequencies and enhance high
frequencies. The frequency domain enhancement always uses
Fourier analysis and other methods to convert an image into
the frequency domain. After completing the filtering operation,
an inverse transform is performed back to the spatial domain.
Typical methods based on the frequency domain include
homomorphic filtering, the wavelet transform and the Curvelet
transform.

a) The principle of homomorphic filtering is to divide the
image into a radiation component and a reflection component.
The radiation component of the foggy image is characterized

by a slow variation in space, and the reflection component
is often associated with the details of the scene. Image
enhancement is achieved by removing the radiation compo-
nent. By combining frequency filtering with the gray scale
transformation, the dynamic range of the compressed image
can be used to improve the image quality.

Thus, the basic principle of homomorphic filtering for de-
hazing is still based on the illumination model. The flowchart
of this algorithm is shown in Fig. 7. where log is the loga-
rithmic transform, FFT is the Fourier transform, H(u, v) is
the frequency filtering function, IFFT is the inverse Fourier
transform and exp is the exponential operation.

Fig. 7. The flowchart of homomorphic filtering.

Seow et al. [64] processed foggy color images using a
homomorphic filter and achieved good enhancement effects.
In [65], a self-adaptive homomorphic filtering method is
proposed to remove thin clouds.

The homomorphic filtering algorithm can remove uneven
regions generated by light, while maintaining the contour
information of the image. However, it needs two Fourier trans-
formations, one exponential operation and one logarithmic
operation for each pixel of the image, so the computation is
large.

b) The basic principle of the wavelet transform (WT) is sim-
ilar to homomorphic filtering for image enhancement. Firstly,
a wavelet transform is performed on the original image, and
images with different frequency characteristics are obtained.
The details of the image are then enhanced for the non-low
frequency sub blocks to improve their clearness.

The WT can be described by the following steps: perform
displacement processing on the basic wavelet function ψ(t)
at step τ , then create a product with signal x(t) for different
scales a:

WTx (a, τ) =
1√
a

∫ +∞

−∞
x (t) ψ∗

(
t− τ

a

)
dt, a > 0. (5)

Its equivalent expression in the frequency domain is:

WTx (a, τ) =
√

a

2π

∫ +∞

−∞
X (ω)Ψ∗ (aω) ejωτdω (6)

where X(ω) and Ψ(ω) are the Fourier transform of x(t) and
ψ(t), respectively.

Grewe et al. [66] proposed a fusion method based on
wavelet analysis, and fused and processed a large number of
foggy images to obtain a high quality visual effect. Russo [67]
implemented equalization with different scales on a degraded
image, and achieved good sharpening results of the details.
Du et al. [68] suggested that haze is distributed in the low-
frequency layer, and thus introduced a single-scene based haze
masking method that uses wavelet analysis to decompose a
hazy image. However, the application of this method is limited
to ice/snow-free scenes. Reference [69] assumed that the fog
is mainly in low frequency regions while scene details are in
high frequency regions, and improved the image quality by
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dehazing the low frequency regions and enhancing the high
frequency regions. Zhu et al. [70] applied the wavelet trans-
form to image dehazing, and then used the SSR algorithm to
enhance the color performance and get the expected haze-free
image. Reference [71] described a new method for mitigating
the effects of atmospheric distortion using a regional fusion
method based on the dual tree complex wavelet transform
(DT-CWT) which improved the visibility. John et al. [72]
introduced a wavelet based method for enhancing weather
degraded video sequences, which processed the foreground
and background pixels of the reduced quality video using
wavelet fusion theory.

The WT is a local transformation of space and frequency
and has advantages of multi-scale analysis and multi-resolution
characteristics for image contrast enhancement. However,
over-bright, over-dark and unevenly illuminated images are
difficult to resolve.

c) The curvelet transform (CT) is a multi-scale analysis
method developed from the wavelet transform, which can
overcome the edge enhancement limitation of WT. CT has
been used to perform automatic processing of foggy images.
Starck et al. [73] presented a new method for contrast en-
hancement based on the CT, which can represent edges better
than wavelets, and is therefore well-suited to multi-scale edge
enhancement. The authors also found that curvelet based en-
hancement out-performs other enhancement methods for noisy
images, but on noiseless or near noiseless images, curvelet
based enhancement is not much effective than wavelet based
enhancement. In [74], the authors implemented an efficient
algorithm which can extract a clear image from a blurred and
hazy image by using the curvelet to increase the clarity of the
image as well as removing image haze.

Although it can improve the visual image quality by
enhancing the curved edges, it cannot in essence remove
interference due to fog from the image. Its general application
includes SAR (synthetic aperture radar) image enhancement
and ceramic micro image enhancement.

In summary, the main purpose of foggy image enhancement
is to satisfy the visual effect requirement for the human eyes,
or make computer recognition easier. While the image quality
is not considered, the methods only need to highlight certain
information while reducing or removing the information that
is unnecessary within an image. Since there is no physical
mechanism and degradation model for foggy image process-
ing, this is not essentially dehazing, especially for foggy color
images, which generally cannot achieve a satisfactory result.

B. Image Fusion Based Methods
Image fusion is the process of combining relevant informa-

tion from multiple source channels into a high quality image.
Fusion strategies should maximize the extraction of informa-
tion from each channel in order to improve the utilization
of image information. These methods have also been used in
image dehazing in recent years. The details of these methods
are given as follows.

1) Fusion With Muti-spectral Images
Near-infrared (NIR) light has stronger penetration capability

than visible light due to its long wavelengths, and is thus

less scattered by particles in the air. This makes it desirable
for image dehazing to reveal details of distant objects in
landscape photographs. The near-infrared spectrum can easily
be acquired by using off-the-shelf digital cameras with minor
modifications [75], or potentially through a single RGBN
camera which can capture multiple images with different
properties simultaneously.

Schaul et al. [76] took advantage of the fact that NIR
images are less sensitive to haze and proposed a method to
dehaze images using both visible and NIR images. In their
method, the optimization framework of the edge preserving
multiresolution decomposition is applied to both the visible
and the NIR images based on weighted least squares (WLS),
and a pixel level fusion criterion is used to maximize the image
contrast. The advantage of this approach for dehazing is that
there is no requirement for a scattering model. An example is
shown in Fig. 8. In contrast with [76], reference [77] performed
dehazing on visible images and infrared images by firstly
using a processing method, and then used a fusion strategy
to complete the image fusion. In [78], the authors proposed
a two-stage dehazing scheme: an air-light color estimation
stage that exploits the dissimilarity between RGB and NIR;
and an image dehazing stage that enforces the NIR gradient
constraint through an optimization framework. This method
also achieved good results.

Fig. 8. Dehazing with multi-spectral images.

Since these methods do not need to detect the fog and
atmospheric light, there is no depth map required. However,
it is difficult to obtain the source images and several halo
artifacts may be seen.

2) Fusion With a Single Image
Ancuti et al. [79]−[81] first demonstrated the utility and

effectiveness of a fusion-based technique for dehazing a single
degraded image. The two images for fusion are both derived
from the original hazy image I(x), and these inputs are
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weighted by three normalized weight maps (luminance, chro-
matic, saliency) and finally blended in a multi-scale fashion
that avoids introducing artifacts.

The first input I1(x) is obtained by white-balancing the
original hazy image. The second image I2(x) is obtained by
subtracting the original image from the mean image using the
expression:

I2(x) = γ
(
I(x)− Ī(x)

)
(7)

where γ is a factor that increases linearly with luminance in
hazy regions.

In order to balance the contribution of each input and ensure
that regions with high contrast are obtained, three measures
(weight maps) are introduced: the luminance weight map
W k

L(x), the chromatic weight map W k
C(x) and the saliency

weight map W k
S (x), where k is the index of the inputs.

Assume that the resulting weights W k are obtained by
multiplying the processed weight maps W k

L , W k
C and W k

S .
Then, each pixel x of the output F is computed by summing
the inputs Ik weighted by corresponding normalized weight
maps W k:

F (x) =
∑

k

W̄ k(x)Ik(x) (8)

where Ik symbolizes the input (k is the index of the inputs)
and W̄ k = W k/

∑
k W k are the normalized weight maps.

Using Gaussian and Laplacian pyramids, the above equation
becomes:

Fl(x) =
∑

k

Gl{W̄ k(x)}Ll{Ik(x)} (9)

where l represents the number of pyramid levels and L{·} and
G{·} are the Laplacian and Gaussian pyramids, respectively.

The final haze-free image J is obtained by summing the
contribution of the resulting inputs (the levels of the pyramid):

J(x) =
∑

l

F
l
(x) ↑d (10)

where ↑d is the upsampling operator with factor d = 2l−1.
This technique is focused on restoring the latent image

without estimating the atmospheric light and transmission
(depth) map, and no post-processing steps are required to
implement. Thus the method is computationally effective.

This method was later used for underwater enhancement
[82], with some proposed improvements. For example, in
[83], the first input image is obtained via a simple linear
transformation and the second image is obtained based on
guided image filtering from a foggy image. The final defogged
result is obtained using simple white balance after image
fusion. In [84], two coarse transmission maps using prior
dark channels are fused during the haze removal stage. One
is obtained based on a single-point pixel and the other is
obtained using a patch. The proposed approach simultaneously
dehazes the image and enhances its sharpness by individually
treating each model component and its residual. In [85], the
foggy image is processed using white balancing and contrast
stretching in turn, and the fusion strategy is used for the haze
density, salient features and exposure level to effectively obtain
the haze-free image. Another fusion-based strategy has been

proposed to combine the initial recovered image with an image
with sufficient details and color information. The combined
image is more informative than any of the input images and
should also appear “natural” [86].

These methods employ a fusion-based strategy for two
images derived from the original image, and thus the images
are perfectly aligned. However, this technique is limited to
processing only color images.

C. Image Restoration Based Methods

Image restoration based methods for dehazing are studied
to explore the reasons for the image degradation and analyze
the imaging mechanism, then recover the scene by an inverse
transformation. In this method, the physical model of the
degraded images is the basis, and many researchers have used
the following general model for image restoration.

1) Degradation Model: As shown in Fig. 9, f(x) is the input
image, h(x) is the degradation function, n(x) is the noise, g(x)
is the degraded image, h′(x) is the restoration function and
f ′(x) is the restored image. The linear time invariant system
can be generally expressed as:

g(x) = f(x) ∗ h(x) + n(x). (11)

Fig. 9. Degradation and restoration model.

However, this model has some shortcomings: the model is
simply expressed as a linear time invariant system, which
ignores the physical process of image degradation and the
degradation function and noise function in the model cannot
easily and accurately express the complex factors of weather
conditions. Therefore, the above model cannot achieve good
results for foggy images.

2) Physical Models Based on Atmospheric Scattering: In
1998, Oakley et al. [87] started to use the Mie atmospheric
scattering law to undertake some research work on images
taken in bad weather conditions. The model-based dehazing
method is now a research hotspot in the image processing
field. In the last decade, some researchers have performed
deep analysis of the degradation mechanism and foggy image
modeling based on atmospheric scattering theory, and have
made great progress and proposed some image processing
methods to enhance image clearness.

According to atmospheric scattering theory, the scattering
of atmospheric particles is mainly divided into two parts: one
is due to the attenuation of reflected light from the object
surface to the camera; and the other is the scattering of
air-light reaching to the camera. Therefore, McCartney [88]
proposed that the imaging mechanism in bad weather should
be described by a light attenuation model and an air-light
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imaging model, which forms a theoretical basis of a foggy
image with characteristics of blur and low contrast that can
be used to understand the degradation mechanism of foggy
images, thus enabling degraded images to be restored. A
schematic diagram of the atmospheric scattering model is
shown in Fig. 10. The solid line is the light from the object to
the camera, and the dotted line is the air-light.

The principle of the attenuation model is described in
Fig. 11. If a beam of light is emitted into an atmospheric
medium, when the incident light passes through a unit area (the
shaded part), the energy of the light will then be attenuated.
It can be expressed by (12).

Fig. 10. Atmospheric scattering model.

Fig. 11. Attenuation model.

Ed(d, λ) = E0(λ)e−β(λ)d (12)

where λ is the wavelength of visible light, d is the distance
from the scene to the camera, β(λ) is the atmospheric scat-
tering coefficient and E0(λ) is the beam radiation intensity at
x = 0.

The principle of the airlight scattering model is described
in Fig. 12. If it is assumed that the direction, intensity and
spectrum of the atmospheric light are unknown, and that the
light traveling along the line of sight has constant energy, then
the radiation intensity reaching the camera can be expressed
by (13).

Fig. 12. Airlight scattering model.

Ea(d, λ) = E∞(λ)(1− e−β(λ)d) (13)

where E∞(λ) is the radiation intensity of the atmospheric light
at infinity.

According to the mechanisms of the McCartney model [88],
the attenuation process and the airlight imaging process are
both dominant and lead to a decrease in contrast of the foggy
image. Therefore, the total radiant intensity received by the
camera is equivalent to the linear superposition of the scene
radiation light with the addition of scattered light entering the
imaging system, and the formula is:

E(d, λ) = E0(λ)e−β(λ)d + E∞(λ)(1− e−β(λ)d) (14)

where the first term is the direct attenuation, which describes
the attenuated result of reflected light in the medium, and
the second term is the airlight (the atmospheric veil), which
reflects the scattering of global atmospheric light. Letting
I(x) = E(d, λ) represent the hazy image, J(x) = E0(λ)
represent the haze-free image, t(x) = e−β(λ)d denote the
transmission, and A = E∞(λ) denote the atmospheric light
(skylight or airlight color), then, equation (14) can be simpli-
fied to:

I(x) = J(x)t(x) + A(1− t(x)). (15)

As can be seen from (15), the main difficulties in solving
single image dehazing are the double unknowns of the haze-
free image J(x) and the transmission map t(x), which are
severely ill-posed. However, if the depth information of an
image is known, or if multiple images can be used to estimate
the depth, or some prior knowledge is available for a single
image, the J(x) can still be resolved.

Therefore, in recent years, many scholars have used (14) or
(15) as the prototype to propose a large number of dehazing
algorithms, many of which have achieved satisfactory results.
Several representative methods based on a physical model will
now be introduced in the following section.

1) Single Image Dehazing With Additional Information
a) Knowing the scene information
The method was first proposed by Oakley and Satherley

[87], who studied a degradation model that was based on
multi-parameter statistics under the assumption that the depth
of the scene is known, and then completed the scattering
attenuation compensation using the estimated weights of pixel
scattering and reflection, and obtained good recovery results.
The method was only suitable for gray images when first
proposed by Oakley; later, Tan et al. [89], [90] improved the
algorithm by performing an in-depth study of the relationship
between the quality of the image contrast and the wavelength,
and extended the degraded image restoration to color images.
On the basis of this study, Robinson et al. [91] constructed a
dynamic and real-time weather system, which was based on
the atmospheric scattering model to compensate for the loss
of contrast by removing the environmental light components
in each color channel.

Later, Hautière et al. [92] estimated the visibility distance
using side geographical information that was obtained using
an on-board optical sensor system [93], [94] to establish the
relationship between the road visibility and the contrast in the
foggy image [24]. They then computed the depth of the scene
by modeling the depth value of each point as a Euclidean
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distance function, and used the 3D geographical model to
remove the fog. Kopf et al. [95] introduced a deep photo
system that uses the existing digital terrain to provide the basic
information. A three-dimensional model of the scene was built
firstly by estimating a large amount of information such as
depth and texture, and then the depth information values as
well as the structure of the image colors and texture were
determined in order to estimate a stable value for the curve
haze. The final physical model can be used for the purpose of
dehazing.

This method is based on the premise that the depth of the
scene is known and that the restoration of the image is good.
However, the hardware requirements for expensive radars and
distance sensors and the requirement for an existing database
to obtain accurate scene depth information severely limits the
real-time applicability of this algorithm.

b) User interaction
In addition, Narasimhan et al. [96] proposed a single foggy

image interactive restoration method, which requires a user to
input the area of the sky or the areas that are seriously affected
by weather, the artificially-specified maximum depth of field
and the minimum depth of the field area to obtain rough depth
information. Using the estimation of scene depth map, the im-
age is then restored based on the atmospheric scattering model.
This method does not require precise information about the
scene or the weather conditions, and does not require changes
in weather conditions between image acquisitions. It is clear
that such simple techniques are easy-to-use and can effectively
restore clear daytime colors and contrasts from images taken
in poor weather conditions, as shown by the example in
Fig. 13. Sun et al. [97] later proposed a method that assumed
gentle changes in the depth of the scene, and then simplified
the atmospheric scattering model to a monochromatic model.
With user assistance, the sky region and the maximum and
minimum depth regions are obtained, and image dehazing is
realized by solving the partial differential equation. This type
of interaction based method can obviously improve the visual
effects and contrast, but since it requires a certain degree of
user interaction, it cannot be done automatically by a real-time
system.

Fig. 13. User interaction dehazing method [96].

c) Machine learning
In recent years, machine learning based methods have been

used for foggy image dehazing [98]. Gibson et al. [99]
explored the idea of learning the depth of fog from a given
dataset and constructed an example based learning method
that takes advantage of machine learning techniques as well

as knowledge of the physics of the atmosphere. Zhu et al.
[100], [101] later proposed a simple and powerful method of
prior color attenuation to create a linear model for scene depth
of hazy images. In this method, a linear model is firstly created
as follows.

d(x) = θ0 + θ1v(x) + θ2s(x) + ε(x) (16)

where x is the position within the image, d is the scene
depth, v is the brightness component of the hazy image, s
is the saturation component, θ0, θ1, θ2 are the unknown linear
coefficients and ε(x) is the random error. Assuming a Gaussian
density for ε with zero mean and variance σ2, then according
to the Gaussian distribution property, d(x) can be expressed
as:

d(x)∼p(d(x)|x, θ0, θ1, θ2, σ
2) = N(θ0+θ1v+θ2s, σ

2). (17)

By learning the parameters of the linear model with a super-
vised learning method on 500 training samples containing 120
million scene points, the bridge between the hazy image and
its corresponding depth map can be effectively built with the
best learning results such that θ0 = 0.121779, θ1 = 0.959710,
θ2 = −0.780245, σ = 0.041337. Using the recovered depth
information, the haze can be easily removed from a single hazy
image. The proposed approach runs quickly and can achieve
good results, but the training procedure is complex and the
parameters rely too much on the training data.

2) Multi-image Dehazing Methods
Depth or detailed information can also be estimated using

two or more different images of the same scene. The recovery
principles used by this method can be divided into two
categories: different polarizing filters and different weather
conditions.

a) Different polarizing conditions
A team of researchers led by Schechner et al. [102] have

studied the polarized characteristics of light and found that
reflected light from the target has no polarization charac-
teristics, and sky light has some polarization characteristics
after medium scattering. Therefore, using the polarization
characteristics of sky light, the authors captured multiple
images of the same scene with different polarization angles
and obtained the degree of polarization, and then restored the
degraded image.

In order to facilitate the description, eq. (14) can be updated
as follows:

I = Jobjecte
−β(λ)d + A∞(1− e−β(λ)d) = J + A. (18)

The basic process of image restoration by polarization of
light is as follows.

Firstly, the degree of polarization (DOP) is defined as a
global parameter, which is independent of the scene depth of
the image. Set A⊥ and AΠ as the parallel component and
the vertical component of atmospheric incident light (A⊥ >
AΠ) respectively, then, the DOP of atmospheric light can be
expressed as:

PA =
A⊥ −AΠ

A
. (19)
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Similarly, the light of the polarization imaging system can
be decomposed into IΠ and I⊥ (I⊥ > IΠ), and the DOP of
the scene is defined as:

PJ =
I⊥ − IΠ

I
. (20)

Since the two images in orthogonal polarization directions
are IΠ = J/2 + AΠ and I⊥ = J/2 + A⊥, then the intensity
of the atmospheric light can be calculated:

A =
I × PJ

PA
. (21)

Based on above equations, the dehazing image can be
calculated using the formula:

Jobject =
I(1− PJ

PA
)

1− I×PJ

A∞×PA

. (22)

From the above analysis, PJ and I can be obtained by using
two or more images in different polarization directions. If A∞
and PA are estimated by the polarized image in the infinity
scene, then a clear image can be obtained from the fog. An
example is shown in Fig. 14.

Fig. 14. Dehazing with ploarized images [102].

Schechner et al. [102], [103] analyzed the imaging pro-
cess of a foggy image, and explained the physical principle
of the polarization effect based on atmospheric scattering.
Firstly, two or more images were collected through adjusting
the polarization direction of the polarizer; then, the contrast
and correct colors of the scene were recovered using these
obtained images in order to estimate the atmospheric optical
polarization coefficient using this data. The optical depth of
the scene is then obtained and image dehazing is realized using
the atmospheric scattering physical model. Using these results,
the scene depth map and the atmospheric particle properties
can also be calculated. However, this method mainly depends
on information about the infinite sky, so it has some limitations
for application. Shwartz et al. [104] then proposed a type of
blind classification method to solve the limitation of parameter
estimation based on sky information. The sky information
may be ignored by assuming that there is no correlation
between the airlight component and the direct transmission
component in some parts of the image, and an independent
component analysis (ICA) method is adopted to restore the
airlight component and other related data information in order

to improve the visibility and color of the image and achieve the
purpose of dehazing. In addition, the authors also processed
the noise added during the course of dehazing. After obtaining
the distribution rate and the intensity of the ambient light,
the noise is considered to be related to the distance and
will be amplified when recovery occurs through the physical
model. So the authors used the regularization method, adaptive
weights related to distance [105] and the nano flow method
[106] to remove noise.

In another paper [107], the authors proposed a type of
polarimetric dehazing method to enhance the contrast and the
range of visibility of images based on angle-of-polarization
(AOP) distribution analysis. Reference [108] introduced an
effective method to synthesize the optimal polarized-difference
(PD) image and presented a new polarization hazy imaging
model that considers the joint polarization effects of airlight
and the object radiance in the imaging process. After an-
alyzing several methods for estimating airlight parameters,
reference [109] proposed blind estimation of the DOP based
on independent component analysis (ICA). In the paper by
Treibitz and Schechner [110], different angles of polarized
filters are quantitatively analyzed according to their signal-
to-noise ratio (SNR) to estimate the dehazing effects. A
quality assessment method suitable for polarization analysis
images in foggy conditions is proposed [111]. Reference [112]
proposed a method that estimates the haze parameters from
the polarization information of two known objects at different
distances, and the estimated parameters are used to remove the
haze effect from the image. Some methods can also be applied
to underwater images [113]−[115], which can not only obtain
clear images, but also enhance the structural information about
the scene.

These methods are very dependent on the DOP of sky light.
While they can enhance the image contrast under thin fog
and dense fog, the dehazing effect may be greatly reduced
because of inaccuracies in the scene information. In addition,
it is difficult to find the maximum and minimum degrees of
polarization under the same scene during rapid scene changes,
and the operation is complicated, so it is not conducive to
image restoration in real time.

b) Different weather conditions
Another method of obtaining depth information of a scene

is by capturing two images of the same scene under different
weather conditions. Narasimhan and Nayar [116]−[120] have
extensively studied the extraction of depth information of
a scene from different perspectives. By analyzing multiple
obtained images of the same scene under different foggy
conditions, it was found that under different scenarios, the
intensity and color of the image was mainly determined by the
atmospheric light and the scattering of atmospheric particles.
Therefore, when there are multiple unknown parameters in the
physical model, the authors combined two or more different
degraded images to obtain useful information, proposed a
geometric framework describing the impact of atmospheric
scattering on color and used this framework for image de-
hazing. Firstly, the geometric constraints of color changes in
different images is calculated; then, these constraints and the
atmospheric scattering model are combined and the color and
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depth information is computed; finally, a three dimensional
structure is obtained to restore the clear image, which achieves
good results. An example is shown in Fig. 15.

Fig. 15. Dehazing with ploarized images [117].

Reference [116] analyzed the effects of the atmosphere
on imaging and proposed a two-color atmospheric scattering
model. The image degradation process due to atmospheric
scattering was described as an interactive function of the color,
the depth and the environmental light at particular points in the
scene, and a structure of the fog concentration and image depth
was constructed. The model takes into account the dependence
of atmospheric scattering on wavelength, which requires a
clear image of the scene without fog. In order to avoid this
constraint, Narasimhan et al. [117] used color changes in the
degraded images under different weather conditions as the
constraint condition and proposed an effective algorithm for
the reconstruction of a 3D scene structure including scene
color information, which can be extended to color images.
In [118], the method of constructing the depth information
of the scene is described in detail which uses two images
of the same scene with different weather conditions. Other
reference [119], [120] introduced a method to calculate the
scene structure, enhance the image contrast and restore clear
images by searching for the depth of discontinuities.

Sun et al. [121] later improved the above method by
changing the original distribution mode for the concentration,
scattering coefficient and color information from global mode
to local mode, where the gradient field related to the depth
is obtained from the partial derivative of the atmospheric
degradation equation, and the Poisson equation is solved to
realize restoration of the foggy image. Chen et al. [122]
used a foggy image and a clear image in the same scene
as the samples to conduct optical modeling of the scene.
After computing the depth ratio with corresponding points,
the image was then restored with the atmospheric scattering
model.

A data-driven approach was presented by Wu and Dai [123],
where multiple observations of the same scene with various

levels of fog are obtained to estimate the scene depth, similar
to the work of Nayar and Narasimhan [116]. Wu and Dai
additionally provided a segmentation step to adapt to changes
in a scene, such as planes moving across the field of view.
Therefore, this approach can account for ambiguous regions.

These types of dehazing methods are simple and can achieve
good results. However, two or more different images in the
same scene are required, so it is difficult to realize image de-
hazing within a short time for real-time monitoring situations,
and difficult to apply and popularize in practice.

3) Single Image Dehazing Method With Prior Knowledge
Single image dehazing is essentially an under-constrained

problem. In order to make image dehazing more practical,
some image dehazing methods based on additional priors or
constraints have been proposed in recent years, adding new
vitality to image processing [124]. Some classic algorithms of
this type of method are introduced in the following paragraphs.

a) Tan method
In 2008, Tan [125] proposed an effective image dehazing

method based on two prior conditions. The first condition is
that the contrast in the image without fog should be higher
than that of the foggy image. The second condition is that the
attenuation of field spots is a continuous function of distance
which should be smooth. The author firstly defined the color
of light, and then by separating each color channel of the
image brightness, the airlight color of the input image can be
transformed to white. The equation can be modified as follows:

I ′(x) = J ′(x)t(x)′ + A(x)




1
1
1


 (23)

where I ′(x) is the image after color standardization, J ′(x) is
the corresponding dehazed image, and the invariant A(x) =
(Ar + Ab + Ac)(1− t(x)).

Based on the first prior knowledge, the cost function of
the edge strength is then constructed, and the formula can be
expressed as:

Cedges(I) =
∑
x,c

|∇Ic(x)| (24)

where c ∈ {R, G, B} are RGB channels and ∇ is the
differential operator.

Based on the second prior knowledge, the airlight is ob-
tained using Markov random fields (MRFs). The potential
function of the MRFs is:

E ({ Ax} | Px) =
∑

x

φ (Px|Ax)+η
∑

x,y∈Nx

ψ (Ax, Ay) (25)

where φ (Px|Ax) is the data item, ψ (Ax, Ay) is the smooth
item, Px is the region with x as the center, Ax is the constant
of the region, η is the strength of the smooth item and Nx is
the neighbor of pixel x.

A is finally obtained using the graph cut method to maxi-
mize the probability of a Gibbs distribution, and it is used to
calculate the transmission rate for the image restoration.

This method can realize dehazing by maximizing the local
contrast with only one image. However, serious “halo” effects
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can easily occur due to sudden changes of depth, leading to
color oversaturation in images with heavy haze.

Based on the same assumption [126], Ancuti et al. later
proposed another dehazing technique which is optimized to
preserve the original color spatial distribution and local con-
trast that is suitable for the challenging problem of image
matching based on local feature points.

In order to address the over-enhancing effects of the Tan
method, and inspired by the Bertalmı́o method [127], Galdran
et al. proposed a perception-inspired variational framework
[128], [129] for the task of single image dehazing without
requiring the depth structure of the scene to be estimated. The
method performs a spatially-variant contrast enhancement that
effectively removes haze from far away regions.

b) Fattal method
Based on the prior knowledge that there is no correlation

between object surface shading and the transmission map,
Fattal [130] used independent component analysis (ICA) and
a Markov random field (MRF) model to estimate the surface
albedo, then obtained the medium transmission of the scene
and recovered the clear image from the foggy image. The key
steps can be described as follows:

Firstly, each pixel in the unknown clear image J is modeled
as the product of the surface reflection coefficient R and a
shadowing factor l, i.e. J = Rl. Therefore, equation (15) can
be transformed to:

I(x) = t(x)l(x)R + (1− t(x))A (26)

R is then decomposed into two components. The first compo-
nent is parallel to the direction of atmospheric light, A and the
second component is called residual vector the R′ ∈ A⊥ and is
perpendicular to the direction of A. Therefore, the transmission
can be calculated using the formula:

t (x) = 1− (IA (x)− ηIR′ (x)) / ‖A‖ (27)

where IA(x) and IR′(x) are the projections of the input
image along the A direction and R′ direction, respectively,
η = 〈R, A〉 / (‖R′‖ ‖A‖) is the measurement of atmospheric
light and 〈·, ·〉 is the standard 3D point multiplication in RGB
space.

Finally, the foggy image is recovered through an inverse
process of the image degradation model with the transmission
function.

This approach is physically sound and can usually produce
impressive results when there is sufficient color information.
Nevertheless, it cannot effectively restore images with heavy
haze and may fail in cases where the original assumptions are
invalid.

In a subsequent work [130], the same author Fattal [131]
presented another new single-image dehazing method based
on the color-line pixel regularity in natural images, and also
proposed an augmented GMRF model with long-range cou-
pling in order to more accurately resolve the transmission in
isolated pixels lacking their own estimates.

c) Kratz method
Kratz et al. [132] proposed another approach that is related

to the Tan method [125], which assumes that the foggy image
is composed of albedo and depth in independent latent layers,

and the factorial Markov random field (FMRF) is used to
compute the depth information in order to recover the haze-
free image.

In this literature, eq. (15) is deformed as follows:

ln
(
L−1
∞ I (x)− 1

)
= ln (ρ (x)− 1)− βd (x) (28)

where ρ (x) is the albedo information and d (x) is the depth
information.

Setting Ĩ (x) = ln
(
L−1
∞ I (x)− 1

)
, C (x) = ln (ρ (x)− 1)

and D (x) = −βd (x), (28) can be expressed as:

Ĩ (x) = C (x) + D (x) (29)

where C (x) and D (x) represent the scene albedo item and
the scene depth item and it can be assumed that both are
independent statistically. If p (C) and p (D) are the prior
knowledge, then, C (x) and D (x) can be computed through
the maximum posterior probability:

arg max
ρ̃,d̃

p
(
C, D|Ĩ

)
= arg max

ρ̃,d̃
p

(
Ĩ|C,D

)
p (C) p (D) .

(30)
Kratz’s method can recover a haze-free image with fine edge

details, but the results are often over-enhanced and suffer from
oversaturation.

The technique of Kratz and Nishino [132] was later ex-
tended in [21]. Kratz et al. [132] introduced a novel Bayesian
probabilistic method that jointly estimates the scene albedo
and depth from a single degraded image by fully leveraging its
latent statistical structures. Their approach models the image
with a factorial Markov random field (FMRF) by jointly
estimating two statistically independent latent layers for the
scene albedo and depth. Experimental results show that the
method can achieve good results but the technique produces
some dark artifacts in regions approaching infinite depth.

Similar to the MRF model in [133], Caraffa and Tarel
[134], [135] took advantage of both stereo and atmospheric
veil depth cues to achieve better stereo reconstructions in
foggy weather and proposed a Markov random field model
of the stereo reconstruction and defogging problem. Their
method can be optimized iteratively using an α-expansion
algorithm. Based on the Bayesian framework, Nan et al. [136]
proposed a method for single image dehazing taking noise
into consideration, and obtained the reflectance image using an
iterative approach with feedback to obtain a balance between
dehazing and denoising. In order to reduce the computation
time of [133], Mutimbu et al. [137] considered the defog-
ging problem as a relaxed factorial Markov random field
(FMRF) of albedo and depth layers, which can be efficiently
solved using sparse Cholesky factorization techniques. Rather
than factorizing the scene albedo and depth through a log-
transform, Dong et al. [138] introduced a sparse prior and
an additive noise argument in the degraded image model,
and proposed an alternative optimization method to iteratively
approximate the maximum a posteriori (MAP) estimators of
these variables. Zhang et al. [139], [140] later described a
new framework for video dehazing based on the Markov
random field and optical flow estimation, which builds an
MRF model on the transmission map to improve the spatial
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and temporal coherence of the transmission. Exploring this in
further depth, Wang et al. [141] proposed a multi-scale depth
fusion (MDP) scheme which obtains the depth map of the
physical model using an inhomogeneous Laplacian-Markov
random field (ILMRF), which can better estimate the depth
map while accommodating the advantages of different patches
and reducing the drawbacks of other methods.

d) He method
He et al. [142], [143] proposed a dark channel prior (DCP)

algorithm that can effectively overcome the deficiencies of
the above two algorithms (Tan [125], Fattal [130]) to some
extent. The dark channel principle is sourced from a remote
sensing image and an underwater image is used to summarize
the rules from a natural image with no fog. The authors
then combined the principle with the atmospheric scattering
model and realized single image dehazing based on DCP. The
motivation of DCP is that for most non-sky patches in haze-
free outdoor images, at least one color channel has very low
intensity for some pixels, with a brightness value Jdark(x)
that is close to 0. It can be expressed as:

Jdark(x) = min
y∈Ω(x)

(
min

c∈{r,g,b}
(Jc (y))

)
→ 0 (31)

where J is the haze-free image and Ω(x) is the local patch
with pixel x at the center.

Using this priori, He et al. were able to identify the local
dark channel patches in the image and used these to roughly
estimate the atmospheric transmission. Thus the atmospheric
scattering model (15) can be transformed into:

min
y∈Ω(x)

(
min

c

(
Ic (y)
Ac

))
= t̃(x) min

y∈Ω(x)

(
min

c

(
Jc (y)

Ac

))

+
(
1− t̃(x)

)
. (32)

Based on the DCP (32), the rough transmission map t̃(x)
can then be obtained:

t̃(x) = 1− min
y∈Ω(x)

(
min

c

(
Ic (y)
Ac

))
. (33)

If the atmospheric scattering model is directly inverted
to obtain the haze-free image, there will be a significant
block effect on the transmission map. Therefore, the authors
optimized their method using soft matting [144]. The optimal
t(x) can be obtained by solving the following sparse linear
system:

(L + λU)t(x) = λt̃(x). (34)

The matrix L is called the matting Laplacian matrix. λ is
set to 10−4 and t(x) is softly constrained by t̃(x).

The DCP algorithm is an important breakthrough in the field
of single image dehazing. Gibson and Nguyen [145], [146]
described the effectiveness of this approach using principal
component analysis and minimum volume ellipsoid approxi-
mation, and Tang et al. [98] confirmed that the dark-channel
feature is the most informative feature for dehazing from
a learning perspective. DCP provides a new concept for
researchers, but refinement of its transmission map requires
high computations. Additionally, when the image contains
large bright areas such as sky, water or white objects, the dark
channel prior assumptions will be invalid.

Many improvements were later done to refine the coarse
transmission map based on DCP, such as WLS edge-preserving
smoothing [147], bilateral filtering [148]−[150], a fast O(1)
bilateral filter [151], joint bilateral filtering [152], a joint
trilateral filter [153], guided image filtering [6], [154]−[160],
weighted guided image filtering [161], [162], content adap-
tive guided image filtering [163], smooth filtering [164],
anisotropic diffusion [165], window adaptive method [166],
associative filter [167], edge-preserving and mean filters [168],
a joint mean shift filtering algorithm [169], adaptively subdi-
vided quadtree [170], edge-guided interpolated filter [171], an
adaptive Wiener filter [172], guided trigonometric bilateral fil-
ters [32], median filter and gamma correction [173], Laplacian-
based gamma correction [174], fuzzy theory and weighted
estimation [175], opening operation and fast joint bilateral
filtering [176], cross bilateral filtering [177] and a fusion
strategy [4], [86], [178], [179] to optimize the transmission
image.

Some approaches have also been proposed based on im-
proved DCP. In [9], a median DCP (MDCP) algorithm was
proposed in order to improve He’s transmission model [142].
By calculating the median neighborhood instead of the min-
imum value of the DCP algorithm, the halo phenomenon
appearing at the edge of the scene is reduced. Shiau et al. [180]
applied a weighted technique to estimate the atmospheric light
and transmission. The method mitigates halo artifacts around
the sharp edges and computes the transmission map adaptively
using a trade-off between the 1 × 1 pixels and the 15 ×
15 pixel dark channel maps. While this method can preserve
edges, it generates oversaturation.

Based on the observation that areas with dramatic color
changes tend to have similar depths, a window variation
mechanism was proposed in another paper [181] that uses the
neighborhood scene complexity and the color saturation rate
to achieve an ideal compromise between depth resolution and
precision.

The other issue is the invalidity of DCP when other objects
have similar colors as the atmospheric light. The method
proposed in [182] defines a reliability map that depicts how
many objects or areas meet the dark channel prior assumption,
and then estimates the transmission map using the reliable
pixels only. Wang and Zhu [183] introduced a novel variational
model (VM) to optimize the transmission using a smoothness
term and a gradient-preserving term to prevent false edges and
distorted sky areas in the recovered image.

Later, Meng et al. [184] provided a new geometric per-
spective for DCP using a boundary constraint, and proposed
a transmission image optimization algorithm that explores
the boundary constraint and contextual regularization. This
method is fast and can attenuate image noise and enhance
some interesting image structures. Chen et al. [185] proposed
an approach based on Bi-Histogram modification that exploits
the features of gamma correction and histogram equalization
to flexibly adjust the haze thickness in the transmission map
of DCP. Reference [186] later presented a new image haze
removal approach that can solve the problems associated with
the presence of localized light sources and color shifts, which
was based on Fisher’s linear discriminant-based dual dark
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channel prior scheme.
Motivated by DCP, Ancuti et al. [187] proposed a semi-

inverse (SI) method of converting the image to LCH (lightness,
chroma and hue) space by using the inverse operator for fast
dehazing, which reduces the complexity of He et al.’s [142]
algorithm by converting the approach from block-based to
layer-based. Gao et al. [188] later combined DCP to present
a fast image dehazing algorithm based on negative correction
to improve the perceptual quality while reducing the compu-
tational complexity. Rather than estimating the transmission
map, the correction factor of the negative of the images is
estimated and used to rectify the corresponding hazy images.
Li et al. [189] proposed a luminance reference model for
transmission estimation by searching for the lowest intrinsic
luminance with small sliding windows, and then refined it
utilizing a bilateral filter to smooth out noises and obtain a
reliable result.

Additionally, DCP-based methods have been extended for
use to night-time images [190]−[192], underwater images [31]
and rainy or snowy [39] conditions. For example, in order to
improve the robustness of the DCP algorithm for night-time
hazy images, Pei et al. [190] combined a color transfer method
which transformed the airlight colors from a “blue shift” to
“grayish”, and then used a DCP method to remove night-time
haze. Their method can achieve results with more details but
the color characteristics of the input are also changed by the
color transfer procedure. Therefore, reference [191] presented
a new imaging model for night-time haze conditions, which
takes into account both the non-uniform light conditions and
the color characteristics of artificial light sources, achieving
both illumination-balance and haze free results. Reference
[192] presented an improved DCP model which was integrated
with local smoothing and image Gaussian pyramid operators
to enhance the perceptual quality of the night videos. For
underwater images, reference [31] proposed an underwater
DCP (UDCP) methodology which basically considers blue and
green color channels to be the underwater visual information
source. This method provides a significant improvement over
existing methods based on DCP.

e) Tarel method
Tarel et al. [193] introduced a contrast-based enhancement

approach to remove haze effects, which aims to be faster
than previous approaches. It assumes that the atmospheric
veil function changes gently over a local region, so the
transmission coefficient of the medium can be estimated by
pretreatment and median filtering. Firstly, a white-balancing
operation is applied to the foggy image, and the foggy regions
are regulated to white. Then, the atmospheric scattering model
given by (15) is transformed to:

I(x) = J(x)(1−A−1V (x)) + V (x) (35)

where V (x) = A(1− t(x)) is the atmospheric veil function.
The minimum color components W (x) of the input image

I(x) can be calculated by:

W (x) = min
c

(I(x)), c ∈ {r, g, b}. (36)

In order to handle edge contours which cause sudden
changes in depth in the image, median filtering is performed
on W (x) to obtain B(x) with a window size sv.

A(x) = mediansv(W (x)) (37)

B(x) = A(x)−mediansv(|W (x)−A(x)|). (38)

Then, the atmospheric veil function can be calculated.

V (x) = max(min(pB(x),W (x)), 0) (39)

where p is the adjusting factor of the dehazing degree.
After solving V (x), the haze free image J(x) is revealed

through (35).
The Tarel method greatly simplifies the dehazing process

and improves efficiency, and Gibson et al. [194] used the color
ellipsoid framework to explain its principle. However, after
median filtering, the smoothed atmospheric veil did not main-
tain the depth edge information, so the algorithm is sometimes
invalid in small edge regions. There are many parameters in
the algorithm, which cannot be adjusted adaptively.

Based on Tarel et al’s method [193], Yu et al. [195]
proposed an edge-preserving smoothing approach based on
a weighted least squares (WLS) optimization framework to
smooth the edges of image. Bilateral filtering [196] has also
been used to refine the atmospheric veil function estimation.
Zhao et al. [197] proposed another edge-preserving smoothing
approach based on local extremes to estimate the atmospheric
veil, finally applying the inverse scene albedo for the recovery
process. Xiao et al. [198] later improved Yu et al’s [195]
method further by combining joint bilateral filtering [199], and
proposed a guide joint bilateral filter to refine the transmission
map obtained by median filtering. This method can preserve
edges and reduce the computation complexity to O(N ). Bao
et al. [200] proposed an edge-preserving texture-smoothing
filtering method to improve the visibility of images in the
presence of haze or fog. Their method can effectively achieve
strong textural smoothing while maintaining sharp edges,
and any low-pass filter can be directly integrated into the
framework. Based on Tarel’s framework, reference [201] later
introduced non-local structure-aware regularization to properly
constrain the transmission estimation without introducing halo
artifacts.

Due to the properties of the median filter, the results of
Tarel’s work cannot remarkably preserve the edges and gradi-
ents of the images and may cause halo artifacts around objects.
Thus, reference [202] introduced a digital total variation filter
with color transfer (DTVFCT) for single color image dehazing.
The estimation of the atmospheric veil is a filtering problem
on the minimal component image and a digital TV filter is
applied to preserve the edges and gradients of the images, in
order to avoid halo artifacts. Negru et al. [203] proposed an
efficient single image enhancement algorithm that is suitable
for daytime fog conditions, which take the exponential decay
present in foggy images into account when computing the
atmospheric veil. Li et al. [204] presented a change of detail
(CoD) prior in an image model, which can estimate the
atmospheric veil through a sharper operator and a smoothing
operator effectively to recover the haze-free image.
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f) Kim method
In order to maintain a balance between avoiding over-

stretching the contrast [125], [132], [142], [193] and the
inability to remove dense haze [130] because of incorrect
estimation of scene depths, Kim et al. [158], [205] presented a
dehazing algorithm based on optimized contrast enhancement
by maximizing the block-wise contrast while minimizing the
information loss due to pixel truncation. Using a temporal
coherence measure, the algorithm has been extended for video
dehazing.

Firstly, the atmospheric light in a hazy image is selected
using the quad-tree based subdivision.

The scene depths are then assumed to be locally similar and
the haze equation, equation (15) can be rewritten as

J (x) =
1
t

(I (x)−A) + A. (40)

The contrast cost Econtrast and the information loss cost
Eloss of each block Ω are then defined as:

Econtrast = −
∑

c∈{r,g,b}

∑

x∈Ω

(
Ic (x)− Īc

)2

t2N
(41)

Eloss =
∑

c∈{r,g,b}

{ αc∑

i=0

(
i−Ac

t
+ Ac

)2

hc (i)

+
255∑

i=βc

(
i−Ac

t
+ Ac − 255

)2

hc (i)
}

(42)

where Īc and N are the average values of Ic (x) and the
number of pixels in Ω, hc (i) is the histogram of the input
pixel value i in the color channel c, and αc and βc denote
truncated values due to underflow and overflow, respectively.

Finally, for block Ω, the optimal transmission t̃ can be
obtained by minimizing the overall cost function:

E = Econtrast + λLEloss (43)

where λL is a weighting parameter.
Experimental results have demonstrated that the proposed

algorithm is capable of effectively removing haze and faith-
fully restoring images, as well as achieving real-time process-
ing. However, it is not suitable for image dehazing in thick
fog.

Similar to Kim’s method, reference [206] later used local
atmospheric light to estimate the transmission for each local
region using an objective function represented by a modi-
fied saturation evaluation metric and an intensity difference,
consisting of image entropy and information fidelity [207].
Motivated by this, Lai el al. [208], [209] assumed that the
transmission map is under a locally constant variable, and
proposed an optimal transmission map method using an ob-
jective function, which guarantees a global optimal solution.
The obtained transmission map accurately preserves the depth
consistency of each object.

4) Atmospheric Light Estimation

Most of the present methods are targeted mainly at im-
proving the quality of the estimated transmission, while of-
ten computing rough estimates of the atmospheric light. In
fact, the atmospheric light estimation is as important as the
transmission estimation, and an incorrect atmospheric light
calculation can cause a dehazed image to look unrealistic.
However, there are some methods that can be used to address
this problem.

Narasimhan et al. [96] adopted a direct manual method
to define image regions affected by atmospheric light, but
it is not applicable to realistic application due to frequent
interruption. Nayar et al. [116] and Kratz et al. [132] employed
a method to estimate atmospheric light by selecting a patch of
the sky in the foggy image. Their methods can achieve good
estimation and have been used in some following algorithms.
However, the methods only work if there is sky in the
scene. Narasimhan et al. [117] and Fattal [130] calculated the
direction of atmospheric light, but it was hard to determine
the intensity of the light. Fattal [130] applied the principle
of uncorrelation to search within small windows of constant
albedo for white pixels that have the lowest correlation.
However, over-saturation may occur when there are white
objects with high intensities. In [141], the authors assumed
that fog-opaque pixels exist not only in the deepest regions of
the depth map but also in smooth regions of foggy images,
since fog-opaque regions exhibit atmospheric luminance and
conceal the textured appearance of the scene. All pixels in
the fog-opaque region are averaged to obtain the color vector
of the atmospheric luminance. In the work of Tan et al.
[125], the brightest pixels in the hazy image were used as
the atmospheric light. However, when there is a white object
in the image, this method is not appropriate. He et al. [143]
used the pixels with the highest intensity in the hazy image,
e.g., the top 0.1% of the brightest pixels was selected from
the dark channel. However, this method is also influenced by
white objects. Tarel et al. [193] estimated the atmospheric
light by calibrating the white balance of the image. This
method is simple to operate and works well for most practical
scenes. Kim et al. [158] selected the atmospheric light in
a hazy image using a hierarchical searching method based
on quad-tree subdivision, which repeats the steps in order to
divide it into four rectangular regions. The brightest region
is chosen as the atmospheric light according to a threshold.
This method is simple and reliable. Pedone et al. [210]
proposed a method based on novel statistics gathered from
natural images regarding frequently occurring air-light colors,
which used statistics to design a new robust solution for
computing the color hue of the air-light. This method is easy
to compute. In contrast with previous methods that focus on
luminance estimation, Cheng et al. [211] proposed a linear
time atmospheric light estimation algorithm based on color
analysis, by estimating the color probability in YCbCr space
to select candidates from the representative fog pixels for air-
light color computation. This method is effective and has very
low computation cost.

In summary, although atmospheric light is an important
parameter for restoration based image dehazing, there are not
as many algorithms proposed to estimate the atmospheric light
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as there are for estimating the transmission map.

III. QUALITY ASSESSMENT FOR IMAGE DEHAZING

Image quality assessment (IQA) is an essential step in
image dehazing. Generally speaking, the assessment of image
quality includes two main aspects: image fidelity and image
readability which can be classified as the subjective assessment
and the objective assessment.

A. Subjective Assessment

The subjective assessment method uses observers to make
the quality assessment using a set of assessment criteria
according to their visual opinion of the processed image.
The results are summarized to compare the performance of
the algorithm. The score was divided into 5 grades. The
assessment required that there were more than 20 assessors
and that some people have experience in image processing
while others should have no knowledge of image processing.
The final quality score, called the mean opinion score (MOS),
is computed to obtain the overall assessment score by averag-
ing the subjective scores from all assessors. The assessment
criteria are shown in Table I.

TABLE I
THE CRITERIA OF SUBJECTIVE ASSESSMENT

Score Assessment grade Quality criteria

1 Worst The worst in the group

2 Worse Worse than average

3 Average Average in the group

4 Better Better than average

5 Best The best in the group

Although this method is simple and can reflect the visual
quality of the image, it lacks stability and is often subject
to experimental conditions, the knowledge of the observers,
their emotions, motivation, and many other factors. In the
current literature, the most common existing solution is to
manually present several images in bad visibility alongside
their corresponding enhanced images which have been pro-
cessed by different algorithms, and then enlarge some regions
with key details for subjective comparison. This method lacks
consistency from different assessors, and is difficult to use in
engineering applications.

B. Objective Assessment

The objective assessment method evaluates the image with
qualitative data according to objective criteria. In general, there
are three major categories of quantitative metrics depending on
the availability of an original image: full-reference methods,
reduced-reference methods and no-reference methods, with the
first two categories needing to use a reference image. However,
for image dehazing, the reference image of the same scene
without haze is usually very difficult to obtain, so there is
no ideal image to be used as a reference. Therefore, the no-
reference evaluation method is often used or a dehazed image
is used as the reference image to evaluate the performance of
the algorithms.

At present, the dehazed image assessment methods can be
divided into two categories in this paper according to their
special purpose: ordinary method and special method. The
former is a general method used for evaluating the quality
of any image, which is adapted to evaluate dehazing effects
only; and the latter is specially designed for use in the
dehazing applications, which uses an assessment principle that
is combined with the characteristics of the hazy conditions.

1) Ordinary IQA
As can be seen from [187], [212], many general IQA

have been employed for image dehazing applications, such
as Ancuti et al. [187] who have compared images with
radically different dynamic ranges [212] to evaluate both the
contrast and the structural changes. Liu et al. [178] adopted a
color naturalness index (CNI) and a color colorfulness index
(CCI) [213] for algorithm evaluation and analysis. Wang et al.
[179] considered that images captured in hazy weather often
suffer from a degradation in contrast, color distortion, and
missing image content, then applied an average gradient (AG),
a color consistency (CC) [214] and a structure similarity
(SSIM) for objective evaluation. Ma et al. [215] adopted eight
dehazing algorithms to perform image dehazing on 25 images,
then evaluated the quality through subjective users and some
general IQA methods (BIQI [216], BRISQUE [217], NIQE
[218], BLINDS-II [219], DILT [220] and NCDQI [221]) and
concluded that none of these IQA models properly predicts the
perceived quality of dehazed images. Some of the commonly-
used IQAs for dehazing images are introduced as follows:

a) Standard deviation (STD): The STD reflects the degree
of dispersion in the image relative to its average value, and
is a measure of the contrast in a certain range. The larger the
standard deviation, the better the visual effect will be:

δ =
M∑

i=1

N∑

j=1

√
(f(i, j)− µ)2

M ×N
(44)

where M and N are the width and the height of the image,
respectively; f(i, j) is the gray value of pixel (i, j) and µ is
the average value of the whole image.

b) Mean gradient (MG): The average gradient reflects the
ability to express details of an image [164] and can be used
to measure the relative clarity of the image. It is formulated
as

G=
M−1∑

i=1

N−1∑

j=1

√
(f(i, j)−f(i+1, j))2+(f(i, j)−f(i, j+1))2

2
(45)

where M and N are the width and the height of the the image,
respectively, and f(i, j) is the gray value of pixel (i, j).

c) Information entropy (IE): If an image is taken as a source
of random output sets {ai} and the probability of ai is P (ai),
then the average amount of information in the image is as
follows:

H = −
L∑

i=1

P (ai) log2 P (ai). (46)

According to the theory of entropy, the larger the value of
IE, the more information is in the image.
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d) Mean squared error (MSE): The simplest and most
widely used full-reference quality metric which is computed
by averaging the squared intensity differences of the distorted
and reference image pixels [98], [101], [164]. It is formulated
as

MSE =
1

M ×N

M∑

i=1

N∑

j=1

[f(i, j)− f ′(i, j)] (47)

where M and N are the width and the height of the image,
respectively, f(i, j) is the original image and f ′(i, j) is the
dehazed image.

e) Peak signal to noise ratio (PSNR): The PSNR can be used
as an index of the signal distortion. A large PSNR corresponds
to a smaller image distortion [141], [153], [164]. It can be
expressed as:

PSNR = 10 lg
f2
max

MSE
(48)

where fmax is the largest gray value, in general fmax = 255.
f) Structural similarity (SSIM): Generally, the human visual

perception is highly adapted to extracting structural informa-
tion from a scene. So, Wang et al. [222] proposed an SSIM
index method to measure the restored image quality from the
perspective of image formation, using the three components
of luminance comparison l(x, y), contrast comparison c(x, y)
and structural comparison s(x, y). The three components are
combined to yield an overall similarity measure. Its formula
is as follows:

S(i, j) = F (l(x, y), c(x, y), s(x, y)). (49)

A diagram for the SSIM measurement system is shown in
Fig. 16.

Fig. 16. Diagram of the SSIM measurement system.

The similarity of the two images is dependent on SSIM,
and has a value between [0,1]. When the value is close to 1,
the two images are more similar. This method can effectively
simulate the human eye to extract structural information from
the image, and the evaluation results are very close to the
human eye. This method has been used in many studies to
evaluate the performance of dehazing methods [101], [141],
[153], [179], [183].

STD reflects the contrast of the image; IE reflects the
information contained in the image; AG reflects the clarity
of the image; and MSE, PSNR and SSIM reflect the degree of
distortion of an image. For MSE, PSNR and SSIM, foggy
images are usually adopted as references, because no fog-
free images exist in these benchmark data. Higher MSE,
lower PSNR and SSIM scores imply greater dissimilarity
between restored results and referenced foggy image. The

above measures are often used for simple calculation since
they have clear physical meaning and are mathematically con-
venient in the context of optimization. However, unfortunately
these approaches cannot be simply adopted, because existing
IQA metrics are generally inappropriate for this application
since they are designed to assess distortion levels rather than
the visibility of fog in images which may not be otherwise
distorted.

2) Special IQA
Some IQAs have been designed particularly for use in image

dehazing from different views. These IQAs are introduced as
follows.

a) Visible edge based method
At present, within research on dehazing effect assessment,

the most famous approach is a blind contrast enhancement
assessment approach proposed by Hautière et al. [223], which
is mainly based on an atmospheric luminance model and the
concept of a visibility level, which is usually used in lighting
engineering. The method evaluates the contrast enhancement
detail between a hazy image and a haze-free image with three
indexes: e (the rate of new visible edges), r̄ (the ratio of the
gradient of the visible edges before and after restoration) and
σ (the ratio of saturated (black or white) pixels).

e =
nr − n0

n0
(50)

r̄ = exp


 1

nr

∑

Pi∈ψr

log ri


 (51)

σ =
ns

dimx×dimy
(52)

where n0 and nr are the number of visible edges before and
after dehazing, Ψr is the visible edge sets of the dehazed
image, Pi are the pixels of the visible edges, ri is the Sobel
gradient ratio of Pi and the corresponding points of the
original image, ns is the number of saturated pixels (black and
white) and dimx and dimy denote the width and the height
of the image respectively. The larger that e, or r̄ are and the
smaller that σ is, the better the dehazing performance will be.

This method can efficiently reflect the edge details of the
images before and after dehazing [80], [83], [173]−[175],
[177], [178], and it is used for dehazing method evaluation
[189], [197], [203], [204], [206], [224]. However, it only
provides three indices for evaluation rather than a generalized
assessment result, and sometimes the evaluation results will
be inconsistent. The method also cannot evaluate the color
distortion.

b) Color distortion based method
To address the color distortion problem due to halo artifacts

and color shifts, Li et al. [225] proposed a color quality
assessment of dehazed images based on a color histogram,
histogram similarity and a color recovery coefficient. The
original image and the dehazed image are decomposed into
an illumination component and a reflection component using
a Gauss low-pass filter. Detailed intensity detection, color
recovery detection and scene structure detection are then
performed and finally the recovery coefficient of the dehazed
image is obtained. The diagram is shown in Fig. 17.
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Fig. 17. The diagram of an assessment system based on color distortion.

This approach can reasonably assess the degree of color
recovery in the dehazed image based on visual differences
in the images before and after dehazing, by calculating the
similarity coefficient of the two histogram distributions. How-
ever, it ignores the evaluation of color richness and a complex
computation problem exists.

c) Contrast-naturalness-colorfulness (CNC) assessment
Guo et al. [226] later proposed a CNC assessment system

which combines contrast, color naturalness and colorfulness.
The diagram is shown in Fig. 18. This evaluation system is
designed to detect contrast and the color quality of the image
based on the visual perception of human eyes. Firstly, the
contrast enhancement degree e is computed using the visible
edges from images before and after dehazing; then, the color
natural index (CNI) and the color colorfulness index (CCI) are
obtained from the dehazed image. Finally, a comprehensive
evaluation function is constructed using e, CNI and CCI,
and the restoration performance of each dehazing method is
evaluated objectively and quantitatively.

Fig. 18. Diagram of CNC assessment system.

Although this method gives assessment results that are close
to the visual perception of human eyes, the evaluation process
is complex and the evaluation results depend too much on the
selection of parameters.

d) Machine learning-based method
More recently, Chen et al. [227] considered the IQA task to

be a classification problem and exploited a rank SVM to learn
a quality predictor in order to compare image enhancement
algorithms for foggy images, underwater images and low light
images. Their approach is focused on the relative quality rank-
ing between enhanced images rather than assigning an absolute
quality score for a single enhanced image. First, the authors
constructed a dataset which contains source images under bad
visibility and their enhanced images processed by different
enhancement algorithms. Then, a subjective assessment is then
performed in a pair-wise way to obtain the relative ranking of
these enhanced images. Finally, a rank function is trained to

fit the subjective assessment results, and can be used to predict
the ranks of new enhanced images, thus indicating the relative
quality of the enhancement algorithms. The framework of this
method is shown in Fig. 19.

Fig. 19. The machine learning-based method.

The experimental results have shown that the proposed
approach statistically outperforms state-of-the-art general pur-
pose NR-IQA algorithms for image dehazing. However, in-
evitably for machine learning based methods, images pro-
cessed from different sources usually do not share the same
classification criterion.

C. Experimental Results Evaluation

In order to compare the effects of various algorithms and to
test the consistency of subjective and objective evaluation cri-
teria, several dehazing methods have been selected to undergo
quality evaluation algorithms. The “Mountain” image and the
“New York” image are used as the original experimental im-
ages and are listed in Fig. 20 (a). Fig. 20 gives the comparison
of the experimental results for various methods including gray-
scale stretching, histogram equalization, adaptive histogram
equalization, the Retinex method, homomorphic filtering, the
wavelet transform, the Tan method [125], the Kopf method
[95], the Fattal method [130], the Tarel method [193], the He
method [142], the Meng method [184], the Kim method [158],
and the Zhu method [101].

As can be seen from Fig. 20 (b)−(g), all of the image en-
hancement methods improve the visual effects of the original
image to some extent with the exception of Fig. 20 (g), which
may be due to unreasonable wavelet coefficient resulting in
blur in this image. In Fig. 20 (c)−(e), the image contrast is
enhanced and the details become clearer, but there are serious
shifts in color tone, and the true color of the original scene has
been lost. Fig. 15 (b) and (f) have little tone shifting overall,
but still do not have an ideal improvement effect. In Fig. 20
(b), the gray-scale stretching results in the loss of some details
and the contour of cloud becomes vague, and in Fig. 20 (f), the
homomorphic filtering method results in a darker color with
a lower contrast in the image, but it achieves the best visual
effect of these two images over the other image enhancement
methods. In contrast, the image restoration methods obviously
improve the hazy image in terms of both tone and detail
recovery, and the visual effect is obviously better than the
above image enhancement methods.
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Fig. 20. Comparison of experimental results with various methods.
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TABLE II
OBJECTIVE EVALUATION OF VARIOUS METHODS ON “MOUNTAIN” IMAGE

Methods PSNR SSIM e r̄ STD AG IE NIQE BIQI BRISQE

Gray stretching 0.53 0.81 0.72 0.34 1.00 0.38 0.82 0.14 0.43 0.20

Histogram equalization 0.58 0.77 0.72 0.37 0.88 0.41 1.00 0.59 0.48 0.40

AHE 0.36 0.28 0.92 0.90 0.28 0.84 0.68 0.90 0.80 0.68

Retinex method 0 0 0.66 1.00 0.10 1.00 0.14 0 1.00 0.58

Homomophic filtering 0.04 0.09 0.89 0.03 0.55 0.14 0.38 0.25 0 0

Wavelet transform 1.00 1.00 0 0 0.29 0 0.47 0.6 0.13 1.00

Tan method[125] 0.15 0.19 0.85 0.64 0.43 0.73 0.46 1.00 0.72 0.74

Kopf method [95] 0.42 0.81 0.81 0.39 0.70 0.38 0.60 0.08 0.43 0.19

Fattal method [130] 0.35 0.82 0.79 0.22 0.50 0.25 0.62 0.12 0.20 0.13

He method [142] 0.10 0.52 0.89 0.26 0.32 0.33 0.37 0.58 0.27 0.31

Tarel method [143] 0.37 0.67 1.00 0.54 0.12 0.53 0.50 1.00 0.49 0.58

Meng method [184] 0.13 0.69 0.94 0.27 0 0.35 0 0.41 0.31 0.38

Kim method [158] 0.13 0.57 0.77 0.40 0.27 0.44 0.57 0.50 0.43 0.43

Zhu method [101] 0.30 0.98 0.81 0.18 0.02 0.25 0.20 0.17 0.19 0.15

TABLE III
OBJECTIVE EVALUATION OF VARIOUS METHODS ON “NEW YORK” IMAGE

Methods PSNR SSIM e r̄ STD AG IE NIQE BIQI BRISQE

Gray stretching 0.73 0.83 0.75 0.41 0.99 0.53 0.49 1.00 0.60 0.27

Histogram equalization 0.74 0.86 0.81 0.41 0.78 0.50 0.79 0.57 0.57 0.10

AHE 0.33 0.32 0.86 1.00 0.73 1.00 1.00 0.87 1.00 0.30

Retinex method 0 0.31 0.69 0.75 0.12 0.92 0.85 0.52 0.96 0.28

Homomophic filtering 0.10 0.21 0.90 0.11 0.97 0.26 0.13 0.65 0.18 0.02

Wavelet transform 1.00 0.75 0 0 0 0 0.16 0 0 1.00

Tan method [125] 0.07 0 0.62 0.83 1.00 0.96 0.38 0.77 1.00 0.26

Kopf method [95] 0.58 0.96 0.82 0.42 0.53 0.48 0.49 0.80 0.48 0.06

Fattal method [130] 0.38 0.84 0.67 0.35 0.75 0.41 0.57 0.71 0.41 0.07

He method [142] 0.27 0.78 0.84 0.41 0.71 0.50 0.16 0.71 0.50 0.10

Tarel method [143] 0.46 0.73 1.00 0.60 0.53 0.65 0.63 0.67 0.67 0

Meng method [184] 0.23 0.69 0.90 0.42 0.63 0.50 0 0.73 0.50 0.11

Kim method [158] 0.35 0.77 0.75 0.50 0.73 0.57 0.42 0.76 0.59 0.15

Zhu method [101] 0.45 1.00 0.89 0.30 0.44 0.38 0.03 0.57 0.35 0.05

Among all of the methods, the Tan method [125], the
He method [142] and the Tarel method [193] have the best
dehazing effect on the whole hazy image, especially for long-
range scenery. However, the Tan and Tarel methods resulted
in color shifting or over saturation, which looks like pseudo
color in the haze-free image. The Kopf method and the Fattal
method can better maintain the color of the original image, but
their overall effect lacks competitiveness. The Meng method
[184], the Kim method [158] and the Zhu method [101] have
similar results with relatively consistent tones. However, these
three methods are not good at processing sharp-jumps in
depth of field due to edges in the scene. Of the above image
restoration methods, the He method [142] can achieve a good
compromise of both close-up scenery and long-range scenery,
while maintaining an outstanding visual effect on fidelity.

From the analysis of Fig. 20, it can be seen that overall,
the image restoration methods are better than the image
enhancement methods, especially in terms of color fidelity
from a human visual perspective.

The objective IQA experiment is also implemented on the
above images. Several IQA methods were selected including
STD, AG, IE, PSNR, SSIM [222], Visible edges (e, r̄) [223],
BIQI [216], BRISQUE [217] and NIQE [218]. Since the
IQA outputs have different dimensions, all data needs to be
normalized. The formula is expressed as

y =
(ymax − ymin)× (x− xmin)

xmax − xmin
+ ymin (53)

where xmax and xmin are the maximum and minimum values
of the data before normalization and ymax and ymin are
the maximum and minimum values of the normalized data,
respectively. In this paper, ymax = 1 and ymin = 0, and
each index’s score is proportional to its performance. The
experimental results for the images “Mountain” and “New
York” are shown in Table II and Table III, respectively.

From Tables II and III, it can be easy seen that for the same
method, different IQA indexes will give different scores. In
some cases, the evaluation results have opposite values, since
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the general IQA indexes are considering different aspects when
evaluating a restored image. On the whole, the scores for the
image restoration based methods are lower than the image
enhancement based methods, especially for the histogram
equalization and AHE which obtain very high scores, which
conflicts with the subjective evaluation. This is mainly because
this IQA focuses on the contrast and structure while ignoring
the color fidelity. Combining the subjective evaluation of
human vision, the above IQA indexes are not consistent with
the subjective evaluation, and may not be suitable for direct
evaluation of dehazed images. Thus, development of an
IQA method for dehazed images is necessary for future work.

IV. CONCLUSIONS AND EXPECTATION

There are three types of dehazing methods seen in current
research: image enhancement based methods, image fusion
based methods and image restoration based methods. All
of these methods have advantages and disadvantages. Image
enhancement based methods improve the image contrast from
the perspective of subjective vision, using a color correction
which conforms to the perception of human visual system
on a color scene. The early methods are mature and reliable,
but these methods result in unpredictable distortion, especially
where there is complex depth in the field image. Image
fusion based methods maximize the beneficial information
from multiple sources to finally form a high quality image.
These methods do not need a physical model, but the fusion
strategy for multiple sources of information is complex. Image
restoration based methods are related to the image degradation
mechanism, and are suitable for image dehazing with different
depth of fields. However, optimal tools are required to find
the solution and these methods may be time-consuming. In
summary, image restoration based methods are better than the
other two types of methods for real scene dehazing and is now
the current research hotspot. The characteristics of some main
approaches are shown in Table IV.

In view of the above analysis, some open questions that
require further study are as follows.

1) Study of a comprehensive degradation model. The con-
struction and resolution technique is core to physical model
based methods for hazy image. At present, in addition to
the widely-used atmospheric scattering model, there are other
degradation models such as the dual-color atmospheric scatter-
ing model and the ATF (atmospheric transfer function) model.
However, none of these models can accurately describe the
phenomenon of haze degradation. Therefore, it is necessary
to explore some cues that have been obtained from research
results of modern atmospheric optics. In addition to
considering the haze attenuation, another approach that should
be explored is to introduce complex atmospheric light, atmo-
spheric turbulence and other factors causing degradation of
the image, so as to establish a more comprehensive physical
model.

2) Explore the prior knowledge of the physical model. A
reasonable priori is a prerequisite for success of single image
dehazing methods based on physical models. Therefore, in
order to accurately obtain the scene albedo, a clear scene
prior is needed as well as a haze degradation prior for the

resolution of the model. For a clear image priori, it is necessary
to consider the human visual color constancy, brightness
constancy and contrast sensitivity as the research objects based
on existing statistical priori, and exploit priori knowledge
suitable for the human eye from clear images. From prior
research on hazy image degradation, it is necessary to consider
the feature variations with environmental light by combining
the effect of turbid media and focusing on different types of
scenarios, including different depths, different concentrations
of haze, different light intensities and different backgrounds
to explore universal priori knowledge, which can constrain
the image solution process effectively and help to estimate
the scene albedo precisely.

3) Integrate the image fusion approach and the image
enhancement approach into the physical model. Many image
enhancement methods have been developed based on the hu-
man vision system, which can quickly and accurately estimate
the image brightness and maintain the true color. Image fusion
methods can determine or mine effective information from
different source images. Therefore, in physical model based
dehazing methods, it is necessary to apply the human visual
perception mechanism to the process of model resolution,
and explore a fast and optimized method that uses multi
scale information fusion technology and machine learning
technology.

4) Strengthen research on video dehazing. Currently, most
video dehazing methods are improvements of single image
dehazing methods and usually contain a large number of
complex data processing algorithms, such as large-scale matrix
decomposition and mass equation group solutions. These
complex operations often require a long processing time, but
real-time performance of the algorithm is very important for
certain application including safety monitoring systems and
military reconnaissance systems. So it is important to establish
how to effectively use potential information between adjacent
frames in a video stream. In addition, use of programmable
hardware to accelerate image dehazing is another future re-
search direction.

5) Design a special IQA mechanism. Effective performance
evaluation of image dehazing can guide the study of dehazing
methods, and can lay the foundation for the design of closed-
loop dehazing systems. At present, the research on quality
assessment of dehazed images still requires further develop-
ment, and the evaluation indexes are mainly concentrated on
image clarity, contrast, color and structural information, while
lacking comprehensive scientific criteria. The no-reference
IQA method based on feature cognition can better fit human
visual characteristics, which can be combined with an image
analysis model, a statistical model, a visual information model
and machine learning theory to evaluate the image dehazing
objectively, and will be a very important research direction.

In summary, image dehazing techniques started relatively
late due to the random nature and complexity of weather con-
ditions, and there is only approximately a decade of research.
At present, as a research hotspot in the field of machine vision,
image dehazing techniques are developing rapidly, and a large
number of new methods continue to appear. Although some
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TABLE IV
COMPARISON OF DIFFERENT APPROACHES

Category Subclass Methods Characteristics

Image enhancement

based method

Histogram

equalization

Global histogram

equalization

It is simple with high efficiency, suitable for overall enhancement of dark or bright images,

but difficult for each local area to restore the optimal value.

Local histogram

equalization

It is suitable for processing of hazy images with changeable depth of field, but local block

effects exist and there is a large calculation complexity.

Retinex method

Single-scale Retinex
It is easy to implement, but difficult to keep a good balance between dynamic range comp-

ression and color constancy.

Multi-scale Retinex
It can overcome the shortage of SSR but it does not have an edge preservation ability and

will lead to halo phenomena.

Frequency domain

transform

Homomorphic

filtering
It is suitable for the processing of images with uneven light, but its computation is large.

Wavelet transform

It has the advantages of multi-scale analysis and multi-resolution characteristics on image

contrast enhancement, but over-brightness, over-darkness and uneven illumination are di-

fficult to resolve.

Curvelet transform
It can improve the visual image quality by enhancing the curve edges but cannot remove

the interference of fog in essence.

Image fusion

based method

Fusion with multi-spectral image
This method does not need atmospheric light or a depth map, but it is difficult to obtain

the source images and yield few halo artifacts.

Fusion with single image
The images for fusion are to be perfectly aligned, but this technique is limited to process-

ing color images.

Image

restoration

based method

Single image

dehazing with

additional

information

Known the scene

information

The restoration effect of the image is good, but scene information is needed from the sen-

sors, or an existing database.

User interaction
It can improve the visual effect and obvious contrast and it can run automatically in a

real-time system.

Machine learning
It runs fast and can achieve good results, but the training procedure is complex and the

parameters rely on the training data.

Multi-images

dehazing with

Different polarizing

conditions

It can enhance the contrast of the image in thin fog, but it is complicated to obtain the

source images.

different

conditions

Different weather

conditions

It is simple and can achieve good results, but it is difficult to obtain the source images

and it cannot be used in real-time systems.

Single image

dehazing with

prior knowledge

Tan method [125]
It can maximize the local contrast with only one image, but easily results in color over

saturation in images with heavy haze.

Fattal method [130]
It can usually produce impressive results when there is sufficient color information while

it may fail in the cases where the original assumption is invalid.

Kratz method [132]
It can recover a haze-free image with fine edge details, but the results often tend to be

over enhanced and suffer from oversaturation.

He method [142]
It is simple and can keep high fidelity of the natural scene, but it is invalid when there

are white objects.

Tarel method [143]
It simplifies the dehazing process and improves the efficiency, but many parameters in

the algorithm cannot be adjusted adaptively.

Kim method [158]
It can keep the balance between contrast enhancement and information loss, but it is not

suitable for image dehazing with thick fog.



WANG AND YUAN: RECENT ADVANCES IN IMAGE DEHAZING 431

research works have shown outstanding results under certain
conditions, these methods still need further improvement. Ex-
ploiting image dehazing methods with universality, robustness
and real-time performance will be a challenging task in the
future.
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images using color and near-infrared,” in Proc. 18th IEEE Int. Conf.
Image Processing, Brussels, Belgium, 2011, pp. 1713−1716.

[76] L. Schaul, C. Fredembach, and S. Süsstrunk, “Color image dehazing
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