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This paper introduces a haze removal algorithm based on region decomposition and features fusion to 

overcome the challenges of the dark channel prior-based algorithm, such as block effect and color dis- 

tortion. In our proposed method, an image is decomposed with the quad-tree method based on gradient 

and grayscale information to obtain the sky regions. These sky regions are used as the seed point for 

region-growing, which will segment the image into sky and non-sky regions. A Gaussian filter is applied 

for smoothing on the segmented image, which is then used as a weight map to optimize the transmis- 

sion image in the dark channel prior algorithm. Finally, the haze-free images are obtained based on an 

atmospheric scattering model and color compensation. Our experimental results demonstrated that im- 

ages restored using this algorithm are generally clear and natural, and the algorithm is especially suitable 

for hazy images with large sky regions. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

In hazy scenes, the scattering of atmospheric particles degrades

he images captured by optical sensors. Image contrast and color

delity are affected to various extents, which directly impact hu-

an visual perception of the images as well as performance of

omputer vision systems. Thus, studies on image dehazing meth-

ds have great significance [1–3] . At present, processing meth-

ds for hazy images mainly include image enhancement-based

pproaches and image restoration-based approaches [4] . In im-

ge enhancement-based methods, the image visual effects are im-

roved by contrast enhancement technique. The main techniques

sed are histogram equalization [5] , Retinex [6] , homomorphic fil-

ering [7] , and wavelet transform [8] . These techniques enhance

he visual effects rather than actually dehaze the image. In im-

ge restoration-based methods, a hazy image degradation model is

onstructed based on the physical process of hazy image degrada-

ion. Lost information in hazy images is compensated using inverse

perations. With strong pertinence, these methods can obtain nat-

ral dehazing effects, so they have received wide attention [9] . For

xample, Narasimhan and Nayar [10] obtained rough depth infor-

ation by manually assigning the maximum and the minimum of

epth of field, and then restored clear images based on physical

odel. Hautiere et al. [11] used an onboard optical sensor system
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o calculate scene depths and used 3D geographical models to per-

orm dehazing. Kopf et al. [12] used existing geo-referenced digi-

al terrain to reconstruct the 3D scene based on the known depth

nd textural information, and then performed model-based dehaz-

ng. This kind of method is based on the precondition that the

epth of the scene is known, which severely limits the application

f this algorithm in real-time system. In addition, Schechener et

l. utilized the polarization property of atmospheric light [13] by

aking a few pictures of the same scene at different polarization

ngles, and then restored the images by estimating the depth in-

ormation based on the degree of polarization. While Nayar and

arasimhan [14] found another way to get the depth information

f scene by capturing two images of the same scene under dif-

erent weather conditions, through which the three dimensional

tructure is obtained to restore the clear image. Both of these two

estoration methods require multiple images for processing. How-

ver, it is hard to obtain multiple images of the same scene under

ifferent conditions, which makes these methods difficult in prac-

ice. 

Over the past few years, some single-image dehazing methods

ased on additional priors or constraints are proposed. For ex-

mple, Tan [15] proposed an image dehazing approach by restor-

ng the image contrast to its maximum extent based on the pri-

ri knowledge that haze-free images have higher contrast than

he hazy images. However, this algorithm can easily lead to over-

aturation. Fattal [16] used independent component analysis (ICA)

nd Markov random field (MRF) model to estimate the surface

lbedo based on the prior knowledge that there is no correlation

etween the object surface shading and transmission map, then
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got the transmission of scene and recovered the clear image from

the foggy one. This approach can usually produce impressive re-

sults when the color information is enough, yet it may fail in the

cases when the assumption is invalid. He et al. [17] proposed a

dark channel prior (DCP) dehazing method based on the statistical

patterns obtained from haze-free image databases. This approach

uses minimum filtering to estimate the medium transmission map

and performs optimization to achieve good dehazing effects. Tarel

and Hautiere [18] used median filtering to estimate the atmo-

spheric veil function and then used a color tone mapping approach

to obtain dehazed images. The restored images were clear and dis-

tinct, but halo effect may easily occur in areas that have rapid

changes in depth of field. Kratz and Nishino [19] assumed that

hazy images consist of two independent layers, the scene albedo

and the scene depth, and used the concept of factorial Markov

random field (FMRF) for modeling, eventually obtaining accurate

depth information. However, some pixels in the images processed

by this method were over-saturated. Later, Kim et al. [20] proposed

a cost function based on image contrast and the degree of informa-

tion loss, which effectively avoids disturbance due to bright objects

when estimating ambient light, and applied this method to video

dehazing. Ancuti and Ancuti [21] first demonstrated the utility and

effectiveness of a fusion-based technique to restore a single hazy

image. Later, Ma et al. [22] present a novel defogging algorithm

based on a fusion strategy to improve the visibility of sea fog im-

ages, and Wang and Fan [23] proposed a multi-scale depth fusion

(MDP) scheme which obtains the depth map of the physical model

using an inhomogeneous Laplacian–Markov random field. 

Among the methods above, the single image dehazing method

by He et al. [17] has been further studied by other researchers

due to its simple principle and excellent effects. Many improve-

ments were done to refine the coarse transmission map based on

DCP, such as WLS edge-preserving smoothing [24] , bilateral filter-

ing [25] , guided image filtering [26] , adaptive Wiener Filter [27] ,

median filter and gamma correction [28] , Laplacian-based gamma

correction [29] , median DCP (MDCP) [30] and a fusion strategy

[31] to optimize the transmission image. Chen et al. [32] proposed

an approach based on Bi-Histogram modification that exploits the

features of gamma correction and histogram equalization to flex-

ibly adjust the haze thickness in the transmission map of DCP.

However, because the sky region does not meet the assumption

of dark channel prior, block effects or serious color distortion may

occur in the restored images due to an underestimated transmis-

sion map, which affects the image visual effects [33] . Jiang et al.

[34] proposed a tolerance-based method to recalculate the trans-

mission map of the bright areas. However, the tolerance calculation

requires parameter tuning for different images. If the tolerance is

too small, distortion cannot be completely eliminated; if it is too

large, it leads to restoration errors in non-bright areas and also re-

duces the dehazing capability of the algorithm. This paper intro-

duces an improved dark channel prior-based dehazing algorithm.

It uses the concept of sky recognition to segment the sky compo-

nent and the non-sky component, and conducts different dehazing

processing on each component to achieve good results while elim-

inating block effect and color distortion. Additionally, the common

problem that dehazed images are generally darker than the real

scene is overcome using a color remapping technique to enhance

the image visual effects. 

The remainder of this article is organized as follows. In Section

2 , atmospheric scattering model is introduced. The algorithm of

image dehazing based on sky segmentation and transmission map

optimization is described in Section 3 , in which the sky segmen-

tation principle, the quad-tree based method for estimating atmo-

spheric light, fusion principle of transmission map and the image

restoration method are described in detail. In Section 4 , some ex-
n  
erimental results are presented to be compared with other meth-

ds. Finally, some conclusions are introduced in Section 5 . 

. Related work 

.1. Atmospheric scattering model 

According to atmospheric scattering theory, imaging model of

azy scene contains two components: one is the attenuation pro-

ess of reflection light from object to camera; the other is the scat-

ering of air-light reaching to the camera. So, the imaging mech-

nism in bad weather can be described as the light attenuation

odel and air-light imaging model, which is the theoretical ba-

is of foggy image with the characteristics of blur and low con-

rast, and is the main basis for us to understand the degradation

echanism of foggy image and restoring the image from degra-

ation. Therefore, the scattering model to describe hazy images is

xpressed as: 

(x ) = J(x ) t(x ) + A (1 − t(x )) (1)

here x is the coordinates, I ( x ) is the hazy image, J ( x ) is the haze-

ree image, A is the atmospheric light, and t ( x ) is the transmission

ap. 

In this model, there are three components that are unknown,

hich makes it an ill-conditioned problem. J ( x )can only be restored

rom I ( x ) by estimating parameters A and t ( x ). 

.2. Dark channel prior 

The dark channel prior is based on a prior statistical patterns

f haze-free images [17] : in most non-sky local areas, there is at

east one color channel that has very low intensity values that may

pproach zero for some pixels, which can be expressed by the fol-

owing equation: 

 

dark (x ) = min 

c∈{ r,g,b} 

(
min 

y ∈ �(x ) 
( J c (y )) 

)
→ 0 (2)

here J c is a color channel of J, �( x )is a small image patch sur-

ounding x , and J dark is the dark channel image. 

To estimate the transmission map t ( x ), the atmospheric light A is

ssumed to be known, and the transmission map 

∼
t (x ) in the local

rea �( x ) is unchanged, then: 

∼
t (x ) = 1 − ω min 

c∈{ r,g,b} 

(
min 

y ∈ �(x ) 

(
I c (y ) 

A 

c 

))
(3)

here ω(0 < ω ≤ ) is a constant which serves to maintain some

esidual of haze to improve the depth perception. 

Due to the block effect in transmission map, soft matting or

uided filtering [17] have been adopted to obtain an optimized

ransmission map image t ( x ). 

According to the atmospheric scattering model, once the trans-

ission map t ( x ) and atmospheric light A have been solved, the

cene depth can be restored using Eq. (1) as follows: 

(x ) = 

I(x ) − A 

t( x ) 
+ A (4)

here A is estimated by identifying the top 0.1% pixels having the

ighest brightness in J dark , and then selecting the maximum values

f the corresponding pixels in the original images. 

.3. Existing problem of DCP 

The algorithm proposed by He et al. was based on a dark chan-

el prior, so it was not applicable to white region such as sky or
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Fig. 1. Dehazing effects using a dark channel prior method. (For interpretation of 

the references to color in this figure, the reader is referred to the web version of 

this article.) 
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ater surfaces. Usually, the dark channel J dark ( x ) in these regions is

uch greater than zero, i.e.: 

(x ) = ( 1 − I dark /A ) < 

(
1 − I dark /A 

1 − J dark /A 

)
(5)

So, the transmission map obtained using the algorithms above

o estimate bright regions is usually smaller than the real value. 

Eq. (1) is equivalent to 

(x ) = I(x ) + 

(
1 

t(x ) 
− 1 

)
(I(x ) − A ) (6)

It is shown in Eq. (3) that the value of t ( x ) is always less than or

qual to 1, the single image haze removal thus can be regarded as

 type of spatially varying detail enhancement [33,38] . The detail

ayer is given as (I(x ) − A ) and the amplification factor is ( 1 
t(x ) 

− 1 )

hich is spatially varying. Since the intensity of the sky is usually

ery similar to the atmospheric light A in a hazy image, it can be

hown that 

( I(x ) − A ) → 0 (7)

Suppose the x is a pixel in sky region, | A − I(x ) | ∈ ( 0 , 20 )

nd t(x ) = 0 . 1 , then, J ( x ) will vary in ( I (x ) , I (x ) + 180 ) accord-

ng to Eq. ( 6 ), which implied that noise could be amplified and/or

alo artifacts could be produced due to the large amplification

actors. Thus, the colors in the final restored image are seriously

istorted. Fig. 1 (a) shows the original image and Fig. 1 (b) shows

he image restored using the dark channel prior method, with the

rea marked by the red rectangle magnified. The magnified image

hows block effects and serious color distortion in the sky area and

he image is dark, which distorts the overall visual effects. Hence,

t is necessary to design a dehazing method specifically for the im-

ge with large sky region. 

.. Dehazing method based on sky segmentation 

To overcome those problems, a dehazing algorithm based on

he dark channel prior is designed specifically for haze removal in

mages with large sky region. This algorithm remaps the transmis-

ion map based on the sky region segmentation and optimizes the

rightness of the restored images to enhance visual effects. The at-

ospheric scattering model is adopted and the dehazing method

ontains three steps. (1) Sky region segmentation: a quad-tree de-

omposition is conducted on the original images to obtain hierar-

hical bounding blocks of the sky sub-region, which is then used

s the seed point of region growing to segment the whole sky re-

ion. (2) Transmission map fusion: a blurring filter is applied to the

oundaries of the segmented sky region and the resulting image is
egarded as a weight distribution map to remap the transmission

aps acquired by the DCP method. (3) Image restoration: after ob-

aining the atmospheric light A , image restoration and brightness

djustment are performed using the atmospheric scattering model.

he overall process of the dehazing algorithm is shown in Fig. 2 . 

.1. Sky region segmentation 

For hazy images containing the sky, it can be observed that the

olors of the foreground are relatively vivid, while the colors of sky

reas are gray and homogeneous due to the haze. Thus, in order

o discover smoothly connected areas with high brightness values

nd mark them as sky, a segmentation method based on region

rowing is adopted. The steps are described in details. 

1) Automatic seed point selection. 

The basic principle of the region growing is to use a single pixel

s the initial seed to incorporate similar pixels around the seeds

nto one region. Therefore, the selection of the seed point, i.e. the

nitial pixels, directly influences the results. To adaptively select the

eed point, quad-tree decomposition method is used for searching.

he basic process is to divide the image into four blocks of the

ame size firstly and estimate if each block meets specified con-

itions. If condition is satisfied, the image block is further divided

nto four sub-blocks using the same approach. This process is it-

rated until the termination condition is met. The decomposition

tructures are shown in Fig. 3 . 

To estimate the value of atmospheric light A , Kim et al. sug-

ested choosing the region with the largest average intensity for

urther decomposition [20] . This method acquires sky sub-regions

n most cases, but could fail when white objects are present in the

mage. Fig. 4 shows the image “LAKE”. Due to disturbance caused

y reflected light from the lake surface, the quad-tree decomposi-

ion, which takes the average gray value as the criterion, leads to

 sky area positioning error, as shown in Fig. 4 (b). 

To improve the robustness of sky location, we assume that the

ky area usually occupies the middle or upper part of the image,

nd multiply a coefficient which is less than 1 to the lower section

f the image during decomposition, which is expressed as: 

(x, y ) = 

{
I g (x, y ) 1 ≤ y ≤ M/ 2 

η I g (x, y ) M/ 2 < y ≤ M 

(8) 

here η is the weight coefficient, less the η, more probability of

he sky on the upper part of image will be. 

Assuming that the image is evenly divided into four parts x i n , i ∈
1, 2, 3, 4] indicates the upper-left corner, the upper-right corner,

he lower-left corner and the lower-right corner, respectively. n is

he level of iterations, and in the initial decomposition, n = 1 . The

atio of average grayscale and gradient value of each region S(x i n )

s defined as the score of this region x i n , the formula is expressed

s: 

(x i n ) = mean (x i n ) /gradient(x i n ) (9)

here mean indicates the average gray scale value and gradient in-

icates the average gradient in this region. 

For the above decomposition process, there is an absolute ter-

ination condition, i.e., for the n th level decomposition, if the

ifference between the maximum and the second maximum is

ess than S T , then the decomposition terminates. Assume that for

he n th iteration, the largest decomposition times are expressed

s S(x k n ) , the termination condition is: 

in 

∣∣∣S(x k n ) − S n (x k̄ n ) 

∣∣∣ ≤ S T (10) 

here min is the minimization operation, and k̄ indicates the areas

xcluding area k . 
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Fig. 2. Diagram of proposed algorithm. 

Fig. 3. Quad-tree decomposition types. 
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Fig. 5 is the decomposition results of different S T s, from which

it can be seen that the termination of quad-tree decomposition

will change faster when S T is larger. 

Using the above rules, the sky is obtained. Since this is the op-

timization of Kim’s method [20] , it more applicable for the images

including water surface or white objects. Some results are shown

in Fig. 6 , where the first row includes original images, the sec-

ond row includes the results with Kim method, and the last row

includes the result of our method, which can be seen that our

method got more accurate sky region. 

In later steps, this area is used to extract seed point for seg-

mentation. The rule for the region containing the seed points is

defined as follows: set the size of the seed point area to [ m × n ].

The gray value of any point ( x, y ) in D is denoted as R ( x, y ), and the

average gray scale value of D is calculated as: 

R a v e = 

1 

mn 

∑ 

(x,y ) ∈ D 
R (x, y ) (11)

Calculate the grayscale difference between every point in D and

R ave : 

R di f (x, y ) = | R (x, y ) − R a v e | (12)

Select ( x s , y s ) as the seed point to make I di f ( x s , y s ) =
min 

(x,y ) ∈ D 
R di f (x, y ) . Using this method, the acquired sky area and the
Fig. 4. Image decomposition resu
eed point are shown in Fig. 7 . Fig. 7 (a) shows the results of the

uad-tree decomposition using proposed method, where the red

ectangle belongs to sky region, and Fig. 7 (b) shows the seed point

alculated using Eqs. (11) and (12) . 

1) Criteria and process of the region growing method. 

After seed point P has been selected, region growing starts from

 , and search the eight neighborhoods around this point. A thresh-

ld T is specified, and when the difference between the search

oint’s gray and that of point P is less than T , the point will be con-

idered part of the same target and marked as L . The above process

s repeated and the search continues outwards to adjoining neigh-

orhoods until disqualifying pixels are found. The area correspond-

ng to the target image is finally obtained. 

The growing criteria to calculate the similarity between the pix-

ls in the seed area and the pixels under examination (i.e., the 8-

onnected pixels and the pixels newly grown from the seed area)

s shown below: 

 

I(x, y ) − M | ≤ T (13)

here T = kσ , M and σ indicate the grayscale mean value and

tandard deviation respectively for all pixels within the present

rown area, and k is the customized coefficient, which is multi-

lied by σ to be used as the threshold for region growing. If the

rayscale of a neighborhood pixel is within this range, then it is

ccepted; otherwise, it is rejected. 

The flowchart of the region growing algorithm is shown in Fig.

 . Firstly, one or more points in the target areas (seed area) are se-

ected and then added to the grown area. These points are then

aken as the starting points and the new grayscale values, and

tandard deviations of all the pixels in the grown areas are cal-

ulated. Next, it is determined whether the neighborhoods of the

resent area have pixel points that meet the growth criteria. If they

o, then these points are added to the grown area and the first

teration has been completed. After the first iteration, the above

teps are repeated until no qualifying neighborhood pixel points

an be found and the region growing algorithm terminates. 
lts based on quad-tree [20] . 
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Fig. 5. Decomposition results of different S T . 

Fig. 6. Comparison of Kim method [20] and our method. 

Fig. 7. Seed point acquisition. (For interpretation of the references to color in this 

figure, the reader is referred to the web version of this article.) 
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Fig. 8. Flowchart of region growing. 
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Finally, all the pixels in the overall image will be segmented

nto two types: sky region and non-sky region, which can be ex-

ressed as a binary image as follows: 

(x, y ) = 

{
0 Non − sky region 

1 Sky region 

(14) 

A sky segmentation example is shown in Fig. 9 , where Fig. 9 (a)

ontains the hazy image including sky, and Fig. 9 (b) shows the sky

rea in white and the non-sky area in black. 

.2. Atmospheric light estimation 

Another key factor in solving the hazy imaging equation is the

stimation of atmospheric light A . According to haze’s characteris-

ics, a heavy haze will increase the brightness of the target scenery.

herefore, Tan et al. took the maximum pixel value in thick haze

reas of an image as the atmospheric light A [15] . In the method by
e, the highest original pixel values of the top 0.1% brightest pix-

ls in the dark channel priori images were regarded as atmospheric

ight A [17] . However, when there are white objects in a scene, if

he window selection during the dark channel image acquisition is

ot appropriate, the white objects will not be eroded, which will
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Fig. 9. Sky region segmentation. 
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Fig. 10. Border blurring. 
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cause the selected atmospheric light intensity to be based on the

white object. The atmospheric light values obtained by the above-

mentioned two methods may be different from the actual value. 

As discussed in Section 3.1 , the atmospheric light value can also

be obtained from the decomposed sky area image. First, the pixel

values in the sky area are extracted. Then, the pixel values in this

area are sorted in descending order. Finally, the average gray values

of the top 1% pixels with the largest brightness values are selected

as the atmospheric light value A , expressed as follows: 

A = mean ( 
0 . 01 

max R (x )) (15)

The thickest hazy region obtained by the above methods is

marked with 1. Experimental results have demonstrated that this

approach can compensate for the impact of white clouds in sky

areas to a certain extent, and also remove evaluation deviations

caused by salt-and-pepper noise that may exist in images. 

3.3. Transmission map fusion and refinement 

After A is calculated, the principle of sky recognition and dark

channel prior are combined, and Eq. (3) is used to estimate the

transmission map 

∼
t (x ) . As the transmission map in the sky area

is small and uneven, it is uniformly set as a constant value t sky ,

while the non-sky area maintains the calculation of transmission

map, that is: 

(x ) = 

{
t sky I seg (x ) = 1 

∼
t(x ) I seg (x ) = 0 

(16)

However, since the transmission map in the sky area is set to be

a constant, there will be a sudden change at the border between

the sky regions and the non-sky regions. Therefore, in order to im-

prove the visual effects, image fusion technology is required to fuse

t sky and 

∼
t (x ) by a certain proportion. In this paper, a weighted

average algorithm in data-level fusion is adopted to smooth the

medium transmission map using the equation below: 

(x ) = ω 1 × t sky + ω 2 ×
∼
t (x ) (17)

where ω 1 and ω 2 are the weight coefficients with the constraint

condition ω 1 + ω 2 = 1 . 

Every point in the acquired binary image after sky area segmen-

tation either belongs to the sky or not. However, after applying the

blurring filter to the boundary area to smooth the transition, the

result image can be regarded as a weighted image of 
∼
t (x ) , which

is used for transmission map fusion. The Gaussian blur method is

used to transform each pixel in the image into a weighted average

of all pixels in the neighborhood, which has isotropy and unifor-

mity features. For example, if the size of a 2D template is m × n ,

then the Gaussian function corresponding to element ( x, y ) in the

template is: 

G (x, y ) = 

1 

2 πσ 2 
e −

(x −m/ 2) 2 + (y −n/ 2) 2 

2 σ2 (18)

where σ is the standard deviation of the normal distribution. 
By performing convolution between the non-zero blurring ker-

el matrix and the original image, a filtered distribution is ob-

ained: 

 

′ 
seg (x ) = I seg ∗ G (19)

here ∗ denotes convolution. Each pixel is a weighted average of

he neighboring pixels. The original pixels coincide with the mode

f the Gaussian distribution, and have the largest weight. Neigh-

oring pixels that are further from the original pixels have smaller

eights. This blurring process is better at retaining the boundary

han other isotropic blurring filters. 

Finally, the transmission map fusion method is given below: 

(x ) = t sky I 
′ 
seg (x ) + 

∼
t (x )(1 − I ′ seg (x )) (20)

here the fixed transmission map value in the sky area is t sky .

hen I ′ seg (x ) = 1 , that is it definitely belongs to the sky, the trans-

ission map becomes to a fixed value. When I ′ seg (x ) = 0 , the nor-

al dehazing is performed. Fig. 10 (a) shows a Gaussian kernel di-

gram, Fig. 10 (b) shows the processed results of Fig. 9 (b), in which

he bright areas and dark areas represent the sky area and the

on-sky area, respectively. 

Since rough transmission estimation can lead to block effects in

he restored image, a guided filter is used to optimize the medium

ransmission map. This method assumes that there is a local linear

elationship between the guiding image I and the filter output q ,

hat is: 

 i = a k I i + b k ∀ i ∈ ω k (21)

here ω k is a template with radius r, a k and b k are the con-

tant coefficients in the window, which makes the border of the

utput image q and the guided image I be consistent in fulfilling

he purpose of both maintaining semicircle information as well as

moothing the image. In this paper, the rough transmission map

btained using Eq. (18) is the input of the guided filter, the hazy

mage is the guided image, and thus the optimized transmission

ap will then be obtained. For example in Fig. 11 , after processing

he guided filter, the border characteristics of the output medium

ransmission rate are remarkably improved, and the connection be-

ween the border and the flat area is more natural. 

Fig. 12 is the transmission map (the first row) and recovery (the

econd row) when t sky changes. Seen from the graph, the color dis-

ortion of the output image becomes more serious as t sky becomes

arger. In the actual process, t sky is usually set to 0.35 by experi-

nce. 

.4. Image restoration and tone adjustment 

After the transmission map t ( x ) and the atmospheric light

 have been computed, the haze-free image of the scene un-

er ideal conditions can be directly restored using Eq. (4) . When

 ( x )approaches zero, the direct attenuation term also approaches

ero, which increases the dehazed image pixel values by too much.

t this time, the restored image may contain noise. So, a lower
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Fig. 11. Transmission map fusion. 
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Fig. 13. Brightness adjustment. 
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ound t 0 is set for the transmission map t ( x ), which makes the de-

azing effects more natural. The final dehazing image J is ex-

ressed as: 

(x ) = 

I(x ) − A 

max ( t( x ) , t 0 ) 
+ A (22)

here t 0 is the set constraint condition, which is set to 0.1 in this

xperiment. 

In addition, since the image is affected by the surrounding en-

ironment and the lighting on hazy days, parts of the images may

ave low brightness and the restored images based on dark chan-

el prior will be even darker. According to Weber–Fechner Law

35] , the subjective brightness perceived by human eyes is acquired

y nerve stimulation caused by reflected light of the object shin-

ng on the human eye’s retina. The subjective brightness L d and the
Fig. 12. The output of transmission map
bjective brightness L 0 present a logarithmic linear relationship,

.e., L d = β log L 0 + β0 where β and β0 are constants. The relation-

hip between the subjective brightness and the objective bright-

ess is shown in Fig. 13 (a), and this curve is used to adjust the

one of the restored images. In order to avoid the increase of com-

utation complexity led by the logarithm operation, in the actual

pplication of this method, a simple function is adopted to match

ig. 13 (a) with the obtained function expression as shown below:

 d = 

L 0 (255 + k ) 

L 0 + k 
(23) 

here k is the adjustment coefficient. As shown in Fig. 13 (b),

he smaller its value is, the larger the adjustment range should

e, In the experiments, k is acquired based on the average value

f the gray level image, and its value is calculated using k =
 . 5 mean (I(x )) , where mean is the average value. An image compar-

son before and after the adjustment is shown in Fig. 13 (c) and (d),
 and recovery when t sky changes. 
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Fig. 14. Overall work flow of this algorithm. 
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where the lower images are the magnified areas of the rectangles.

In Fig. 13 (c), although the haze is removed, the overall brightness

is poor – the image is dark with bad tone. Compared to Fig. 13 (c),

the overall brightness and contrast of the adjusted image in Fig.

13 (d) have been improved, and the visual effects are closer to the

real scene that would be seen under conditions on a fine day. 

The flowchart of this algorithm is shown in Fig. 14 . 

4. Experimental results analysis 

In order to analyze the effectiveness of the dehazing algorithm,

an experimental platform is built and the program is written. The

experimental hardware platform is a Dell laptop with Intel(R) i7-

5500 U CPU@2.4 GHz and 8G RAM, and the testing software is Mat-

lab 2014b running on Windows 8. 

Fig. 15 shows the processed results of the experimental images

using our method, where Fig. 15 (a) is the original image; (b) is

the sky search result, with the sub-area of the sky marked with a

red rectangle; and (c) is the result of the sky segmentation, where

the white region is the sky and the black region is non-sky. This

demonstrates that this algorithm can accurately recognize sky re-

gion and non-sky region (almost consistent with the result that

can be observed by human eyes). Fig. 15 (d) is the transmission

map after fusion; and (e) is the final restored image result. The

final image shows clear details in the restored image with a nat-

ural transition between the sky area and the non-sky area, which

demonstrates the feasibility and effectiveness of the transmission

map estimation method proposed in this paper. 

We compared our method with the classical enhancement-

based methods [5–8] , He’s method [17] , Tarel’s method [18] ,
eng’s method [36] , and Zhu’s method [37] . The comparison pa-

ameters include visual evaluation and computational complexity

39,40] . 

.1. Visual evaluation 

Fig. 16 shows a comparison of experimental results between the

roposed method and some traditional enhancement-based meth-

ds. Fig. 16 (a) is the hazy image. Fig. 16 (b)–(h) are the images pro-

essed with histogram equalization, the Retinex method, the ho-

omorphic filtering, the wavelet transform, and the proposed al-

orithm, respectively. As shown in Fig. 16 (b)–(f), in the visual ef-

ects, all have different degrees of changes. In Fig. 16 (d), the image

ontrast is remarkably enhanced; the details become clearer with

righter color. However, the color tone significantly shifts and loses

he true color of the original appearance. Fig. 16 (b) and (e) have

inimal tone shifting overall; however, the improvement effect is

till not ideal, while the homogenous filtering method results in a

arker color with a lower contrast in the image. On the contrary,

he method proposed in this paper shows obvious improvement to

he hazy image in both tone and detail recovery. The visual effect

s obviously better than that of the above methods. 

Fig. 17 presents five groups of experimental results. Fig. 17 (a)–

e) are the original image and the results by He’s method

17] , Tarel’s method [18] , Meng’s method [36] , and the proposed

ethod, respectively. The figures show that all of the above meth-

ds have improved the visual effects for hazy images including

he contrast. However, for the sky areas in images, both block

oise and serious distortion phenomena are seen when using He’s

ethod [17] or Meng’s method [36] . This is due to the fact that

he estimated value of the sky transmission map is too small, thus

xaggerating the noise and the color range to a large degree. Al-

hough the sky area is smooth after processing by Tarel’s method

18] , a white edge phenomena occurs at the border between the

ky area and the non-sky area in the restored images (e.g., the en-

arged part in the rectangle in the fifth image). Since the proposed

ethod in this paper applies a special treatment to the whole im-

ge’s transmission map using fusion, the contrast between the sky

rea and the non-sky area in the restored image is high, and there

s a natural border transition, so the overall image effect is natural.

.2. Computational complexity 

To verify the advantages of this method in terms of running

peed, images of different sizes are used for experiments. The pro-

osed method is compared to He’s method [17] , Tarel’s method

16] , and Meng’s method [36] . Table 1 shows that He’s method

17] has the lowest computing efficiency when processing a sin-

le image, mainly because soft matting is a solution problem for

arge-scale sparse linear systems with high computation complex-

ty and can only compute images of limited sizes. Tarel’s method

18] adopts a median filtering for optimization, but as the size of

he images increases, the computational complexity also rapidly in-

reases. Meng’s method [36] and the proposed method both have

lmost equivalent computation efficiency, but our algorithm adopts

 guide filtering method and has the advantage of a faster running

peed when the image is enlarged. 

.3. Results on heavy hazy image 

The proposed algorithm is also test on the images with very

eavy haze, which is a big challenge work, and the experimental

esults are shown in Fig. 18 . The first line is hazy image and the

econd line is according haze-free image. It can be seen that the

estored images are not satisfied, only the objects with thin haze

re recovered as well as the traditional image-restoration methods
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Fig. 15. Dehazing experimental results by proposed method. (For interpretation of the references to color in this figure, the reader is referred to the web version of this 

article.) 

Fig. 16. Comparison between proposed method and traditional image enhancement. 

Table 1 

Comparison on computational complexity. 

Resolution He’s method [17] Tarel’s method (s) [18] Meng’s method (s) [36] Proposed method (s) 

600 × 400 21.76 s 7.65 1.24 1.06 

800 × 600 47.92 s 23.14 2.29 1.98 

1024 × 768 83.77 s 56.87 3.79 3.77 

1600 × 1200 Out of memory 303.15 9.38 7.89 
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17,18,36,37] . However, no block effect exists in the restored image,

hich is in line with the human visual perception. 

.. Conclusions 

To address the problems of block effect and color distortion in

CP-based methods, an optimization algorithm is proposed based
n region decomposition and features fusion in this paper. In

hich the sky sub-region is obtained using quad-tree decomposi-

ion based on the regional grayscale and gradient information, and

t is used to extract seed point for region growing in order to seg-

ent the image into sky and non-sky regions. The Gaussian filter is

pplied for smoothing on the segmented image, and the smoothed

mage is then used as a weight map to optimize the transmis-
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Fig. 17. Experimental results comparison with various methods. 

Fig. 18. Experimental results on heavy hazy images. 
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ion map. In addition, color compensation method is designed to

esolve the low brightness problem of restored image based on

uman visual perception mechanism. Experimental results demon-

trated that the images restored using our proposed algorithm are

lear and natural, and is particularly well adapted for hazy image

rocessing with large sky areas. The main problem of this algo-

ithm is that the image processing efficiency is still not sufficient

or video processing. Thus, further improvements are required to

he computational efficiency in the future. 
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