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Fractal Dimension of Irregular Region of Interest
Application to Corn Phenology Characterization
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Abstract—Analysis of multitemporal remote sensing imagery of-
fers a reliable and cost-effective means for monitoring crops on a
broad-scale and provides consistent temporal measurements. Frac-
tal geometry has been used as a quantitative description of spatial
complexity of remote sensing images. Yet, corn field of spatial irreg-
ularity alters the fractal dimension of the landscape, which shall be
suppressed in the estimation. In this paper, we propose a method
for computing fractal dimension from irregular region of inter-
ests that minimizes the contribution from 2-D spatial irregularity.
Our method was evaluated with normalized difference vegetation
index products derived from moderate resolution imaging spec-
troradiometer and satellite pour l’observation de la terre VEGE-
TATION sensors from three states in the U.S. The experimental
results using the time series demonstrated that our proposed frac-
tal dimension estimation method exhibited great consistency and
invariance to the change of image spectral characteristics, spatial
resolution, and the degree of pixel mixing. In contrast to entropy
and variance, the spectral characteristics of different imaging de-
vices exhibited lower impact to the fractal dimension, which also
implies its scale invariance. With respect to the detection rate of
the first peak, fractal dimension achieved the best consistency. The
proposed method for computing fractal dimension provides a crit-
ical and reliable measure for studying phenological patterns.

Index Terms—Fractal dimension, normalized difference
vegetation index (NDVI), texture.

I. INTRODUCTION

PHENOLOGY varies over the life cycle of crops [1], which
leads to diverse phenological patterns in timing, frequency,

duration, and degree of synchrony [2]. Analysis of multitempo-
ral remote sensing imagery offers a reliable and cost-effective
means for monitoring crops on a broad scale and provides
consistent temporal measurements [3]. Detecting the dynam-
ics of phenology activities is a prerequisite toward phenology-
related applications [4], and characterizing crop phenology is the
key.
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Normalized difference vegetation index (NDVI) provides a
perspective of biotic activities [5] and has been widely employed
in phenology-related research [6], [7]. Conventional phenology
detection approaches using multitemporal satellite data mainly
take spectral responses into account [8], [9]. However, NDVI-
based phenology studies are confronted by the problems of spec-
tral characteristics, spatial resolution, temporal coverage, mixed
pixels, etc., which affect the consistency of phenology charac-
terization. To quantitatively characterize phenology dynamics,
descriptive features from NDVI data that are scale invariant and
robust to irregular spatial region need to be studied.

Fractals are patterns that are self-similar across different
scales. Fractal dimension [10] provides a metric to evaluate
the complexity of the repeating structures in fractal patterns. In
contrast to the conventional feature descriptors such as color
histogram, cooccurrence matrix, and entropy, fractal dimension
gives a quantitative evaluation that is independent from the scale,
which makes it a highly promising metric for the evaluation of
remote sensing imagery that varies in resolution. Corn fields at
different progress stages contribute to the variation in NDVI [8].
Soil background effects and density of corn leaf canopy affect
the roughness of an NDVI image. Each such image corresponds
to a data point in the fractal dimension time series, which follows
a bimodal distribution throughout the life cycle of corn crops.
The two peaks in the time series correspond to the emerged
and harvested stages [11]. The variation of the spatial pattern in
an NDVI image provides a critical and reliable perspective for
analyzing the growth of crops.

Research has been conducted to apply fractals to various
real-world problems, e.g., image classification [12], spatial scal-
ing correction [13], urban landscapes [14], and forested land-
scapes [15]. Fractal analysis has been applied to multiresolution
remote sensing images for landscape characterization [16]–[19].
Amri et al. [20] used fractals to quantitatively characterize NDVI
dynamics. Liang et al. [14] evaluated the effectiveness of diverse
fractal algorithms in the characterization of urban landscapes
based on satellite images taken by diverse sensors. Al-Hamdan
et al. [15] investigated the applications of fractal measurements
to different spatial, temporal, and spectral resolutions of remote
sensing data acquired from different sensors. However, in as-
pect of corn phenology characterization, corn fields are usually
depicted in an irregular region of interest (ROI) in an image,
whereas fractal dimension estimations are often performed with
regular ROIs, e.g., a square region in an image. The fractal di-
mension encapsulates the irregularity in a 3-D space. Yet, com-
ponents from spatial irregularity alter the fractal dimension of
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the landscape and shall be suppressed in the estimation. Hence,
the scalability of fractals in irregular ROIs requires further in-
vestigation.

There exist indirect strategies for estimating the fractal di-
mension of irregular ROIs, e.g., partially cutting method [21],
which segments a regular sample from the whole ROI, then es-
timates the fractal dimension following the conventional fractal
dimension estimation procedure. The mean local fractal dimen-
sion method [22] estimates each pixel in the whole ROI with
a local fractal dimension estimation algorithm, then calculates
the mean fractal dimension of the ROI. However, the accuracy
of these strategies will be affected by the nonuniform distribu-
tion of corn pixels in the remote sensing imagery, even makes
the estimation inestimably. In addition, Klinkenberg [23] tried
using the dimensionality reduction technique to estimate the
fractal dimension of 3-D surface. The basic principle is that
higher dimensional spaces can be built up systematically as di-
rect products of fractals in lower dimensional spaces. While in
Klinkenberg’s approach, the fractal dimension of surface was
estimated only by calculating the fractal dimension of contours
extracted from the surface, and then, increasing by 1 to account
for the difference. The limitation is that the fractal dimension
of the contours or profiles in a certain position of surface equals
not to other positions for a nature surface.

Image resolution and scale greatly affect the appearance of
ground objects in remote-sensed imagery. Conventional texture
metrics require a scale to compute the feature descriptor, e.g.,
entropy, which makes the application of these methods highly
sensitive to the choice of the scale parameter, which is usually
determined empirically. We hypothesize that by circumventing
the spatial and scale constraints, fractal dimension serves as a
highly competitive feature descriptor for describing complex
ground patterns, and hence, is appropriate for phenology analy-
sis. In this paper, we propose a method for computing the frac-
tal dimension of regions with irregular ROIs to minimize the
contribution from spatial irregularity. We conduct a thorough
evaluation of its efficacy and robustness to characterize corn
phenology from NDVI time series. Pixels of corn field across
different levels of pixel mixing follow a similar spatial distribu-
tion. Two criteria including similarity metric of time series and
consistency metric of the key phenology stage are employed in
our evaluation.

The rest of this paper is organized as follows: Section II
presents phenology analysis using remote sensing methods and
describes our methods for cropland masking using spatial incon-
sistent imagery data and fractal dimension metric for irregular
ROIs. Section III presents our experimental data and evalua-
tion criteria, and discusses the results. Section V concludes this
paper with a summary.

II. FRACTAL-BASED CORN PHENOLOGY CHARACTERIZATION

Fig. 1 illustrates the overall procedure of our phenology anal-
ysis. In our method, the time series of remote sensing images
provides the temporal changes of the fields and each image
is processed individually. With assistant of cropland mask,
corn fields are delineated from each NDVI image. The scale

Fig. 1. Corn phenology analysis using NDVI data.

difference between NDVI image and the corn field mask is min-
imized in the preprocessing step. Yet, the masking process must
address pixel mixing issue. The fractal analysis computes the
fractal dimension of the corn fields by minimizing the impact
from irregular ROIs.

A. Cropland Masking

Cropland masking employs an image mask to exclude the
undesired noncorn regions in the image. Due to the inconsis-
tency in the resolution of the mask and the image as well as the
misalignment between them that induces a mixture of different
land covers, a purity ratio is devised to measure the dominance
of the corn components, and hence, decide if a pixel is con-
sidered a corn pixel and shall be included in fractal dimension
calculation.

The image mask used in cropland masking is created either via
a segmentation process or using an existing data product such as
cropland data layer (CDL) [24] that is produced annually by the
National Agricultural Statistics Service (NASS) of the United
States Department of Agriculture (USDA). However, the spatial
resolution of such a data product differs from year to year. For
CDL data between 2006 and 2009, the spatial resolution is of
56 m, and that of the other years is 30 m. In addition, the scale
difference to the NDVI imagery and misalignment also poses
issues. We use a purity ratio to map an NDVI image to corn field
segments for fractal analysis.

The purity ratio (denoted by ρ) for each NDVI pixel N(a, b)
is calculated with respect to the geo-registered cropland mask

ρ(a, b) =
C(a, b)
|N(a, b)| (1)

where C(a, b) is the size of corn field in an NDVI pixel N(a, b),
and |N(a, b)| denotes the spatial coverage of this NDVI pixel
(e.g., |N(a, b)| is 1 km2 for a satellite pour l’observation de la
terre VEGETATION (SPOT-VGT) image). The cropland size
of an NDVI pixel is less than or equal to the NDVI pixel size,
i.e., C(a, b) ≤ |N(a, b)|. In a cropland mask M , pixels of crops
and noncrops are represented with ones and zeros, respectively.
Fig. 2 illustrates the georelation of cropland mask and the NDVI
image. The top layer depicts an NDVI image and the bottom
layer shows the cropland mask and the projected georegistered
NDVI image, which is outlined with dash line. Due to the mis-
alignment between two datasets, partial overlapping occurs as
shown in Fig. 2, i.e., part of a cropland mask pixel is within
an NDVI pixel by an offset of Δx ≥ 0 and Δy ≥ 0. Hence,
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Fig. 2. Cropland masking and geoalignment. The top layer depicts an NDVI
image and the bottom layer shows the cropland mask and the projected georeg-
istered NDVI image (in dash line).

TABLE I
THRESHOLDS FOR DIFFERENTIATING NDVI PIXELS

Thresholds NDVI Pixel Category Image Modality

≈0% corn-presence pixels MODIS, SPOT-VGT
50% partial pixel mixing MODIS, SPOT-VGT
≈100% corn-dominated pixels MODIS

C(a, b) can be computed as a summation of the size of the
partially overlapped cropland mask pixels as follows:

C(a, b) =
a+Δx+ |a |∑

a+Δx

b+Δy+ |b|∑

b+Δy

M(x, y) (2)

where | · | gives the spatial size of a pixel in the respective
dimension. When applying the purity ratio, a threshold is used to
decide if an NDVI pixel is considered as a corn pixel. Assuming
the threshold is 50%, the example depicted in Fig. 2 consists of
three corn field pixels and one noncorn field pixel in the NDVI
image. In general, increasing the threshold allows less amount
of noncorn components in a NDVI pixel.

To understand the effect of using different purity ratios to
the fractal dimension computation, our evaluation used three
thresholds as listed in Table I. Partial pixel mixing and two
extreme cases (corn-dominated pixel and corn-presence pixel)
are considered. When the corn crop occupies an entire NDVI
pixel (i.e., corn-dominated pixel), the NDVI of this pixel re-
flects the spectrum of corn. In case of partial pixel mixing, the
majority of an NDVI pixel represents the spectrum reflection
of corn. When corn weakly appears in the NDVI pixel (i.e.,
corn-presence pixel), an NDVI pixel allows contribution from
the bare ground and other vegetation.

Three thresholds were set for the moderate resolution imaging
spectroradiometer (MODIS) NDVI image, i.e., corn-presence
pixel (ρ ≈ 0%), partial pixel mixing (ρ = 50%), and corn-
dominated pixel (ρ ≈ 100%); and partial pixel-mixing and corn-
presence pixels were set for SPOT-VGT. Because only a few
corn pixels remain in the masked image, the threshold of corn-
dominated pixels was not used in the process of SPOT-VGT
imagery [an example is shown in Fig. 5(f)].

Fig. 3. Fractal dimension for characterizing cropland (depicted in gray shade)
texture. (a) Cropland in a remote sensing image. (b) Masked cropland for fractal
dimension. (c) Ideal ROI for fractal dimension calculation.

B. Fractal Dimension of Irregular ROI

Fractals offer advantages for texture analysis with minimum
influence of scale due to their self-similarity property. Box-
counting dimension is an intuitive way of computing fractal
dimension. Given a manifold R in a metric space, the space is
gridded into even cells (or boxes) of side length ε. B(ε;R) is
the number of boxes to cover the manifold. The box-counting
dimension D(R) is the number of boxes as the side length of
the boxes approaches zero

D(R) = lim
ε→0

log B(ε;R)
log 1

ε

(3)

where B(ε;R) is the number of boxes to fill the manifold R
with a side length (or scale) ε. That is, by reducing the size of
the boxes, we accurately capture the structure of the manifold.
The fractal dimension allows us to characterize patterns and
shapes quantitatively and is robust to the variance of object
scale, which is common in real-world applications. Yet, remote
sensing images are not strictly self-similar at all scales [25];
they may be at most only statistically self-similar over a limited
range of scales [26]. The fractal dimension can maintain self-
similarity over a large range of scales, and the scales used to
estimate the fractal dimension in this study have been tested to
fall within this range.

Croplands usually appear irregularly in remote sensing im-
agery as shown in Fig. 3(a). Of the wide variety of methods
available for estimating fractal dimension, the computation is
performed based on regular ROIs (mostly square regions) [26],
[27]. Consider an NDVI image in a 3-D Euclidean space and the
pixel value serves as the third dimension in this space. Hence,
the image intensity is perceived as a rugged manifold. To ad-
dress the spatial irregularity of the targeted regions in remote
sensing data, the dimensionality reduction based differential
box-counting (DR-DBC) method [11] was developed that inte-
grates fractals in subspaces. The idea is based on the property
that box-counting dimension is equivalent to the summation of
the lower fractal dimensions of the subspaces [28]

D(S × S ′) = D(S) + D(S ′)

where S ⊆ �m and S ′ ⊆ �n andD(·) denotes the box-counting
dimension of a manifold spanning a space R × R′. Hence, the
fractal dimension of an irregular manifold R is the summation
of the fractal dimensions of its subspaces

D(R) = Dz (R) + Dxy(R) (4)
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where Dz (R) is the fractal dimension of R in the vertical direc-
tion and Dxy(R) is the fractal dimension of R in the horizontal
plane x − y. This computation of fractal dimension also charac-
terizes the spatial layout of the manifold as shown in Fig. 3(b),
which induces error along the boundary of the target region
because a cell may contain a mixture of croplands and noncrop-
lands.

To compute the fractal dimension of R in 3-D space, the space
is partitioned with cubes of scale ε in all dimensions, namely ε-
cube. The box dimension of manifold R is computed following
(3) [29]. The calculation of B(ε;R) requires dividing the space
with ε-cube, and hence, we have

B(ε;R) =
∑

ε2 ∈R

⌈
N ∗ − N∗

ε

⌉
(5)

where N ∗ and N∗ denote the maximum and minimum values of
the NDVI pixels in a cube. ε2 ∈ R denotes the cube lands in the
cropland region of the NDVI image. In practice, the noncropland
results in zero count of ε-boxes.

Note that the image size and the image color depth are not
necessarily of the same scale. The ε-cube could be uneven on its
sides. For instance, we can have a cube of ε × ε × ε′, where ε �=
ε′. However, the algorithm for calculating the fractal dimension
remains unchanged. For simplicity, we use ε-cube of equal sides
in the rest of our discussion.

To compute Dxy(R) in (4), ε-box is used to fill the manifold
R in x − y plane. The algorithm follows the same idea as the
one used for computing D(R). Hence, the fractal dimension
of R in the vertical direction, i.e., Dz (R), is the difference of
D(R) and Dxy(R).

However, to characterize the texture of croplands, each cell
(i.e., an NDVI pixel) contains only the measurements of crops
in the ideal case. That is, the texture feature of the cropland is
independent from the shape of the field. Hence, the computation
of fractal dimension shall not account for the irregularity of the
region of study.

Let D⊥ denote the fractal dimension of the manifold (i.e.,
the croplands in an NDVI image) that spans the entire field of
view as shown in Fig. 3(c). D⊥ is, hence, proportional to D(R)
with an addition that fills the voids in the non-cropland areas
[i.e., the cells without texture in Fig. 3(b)]. Such addition can be
approximated with the difference between two dimension and
the fractal dimension of manifold R in x − y plane

D⊥(R) ∝ D(R) + (d −Dxy(R)) (6)

where d is the full dimension of the subspace x − y.
D⊥ inherits the scale invariant property of box-counting di-

mension. Furthermore, it enables computing the fractal dimen-
sion of objects with irregular spatial region in images, and allows
to characterize the phenology changes of corn crop.

III. EXPERIMENTAL STUDY

A. Datasets

Corn is the most widely grown grain crop in the United States.
NDVI data have been acquired in three primary corn-producing
districts in the U.S. Corn Belt, namely the states of Iowa (IA),

Fig. 4. Three states on the U.S. Corn Belt: Iowa, Illinois and Nebraska, where
test data are collected from.

Illinois (IL), and Nebraska (NE). The geographical locations are
shown in Fig. 4. The three states occupy approximately 39.7%
of the total U.S. corn harvested area in 2013. In our experi-
ments, two types of NDVI products are derived from MODIS
and SPOT-VGT [30], [31] sensors. These two datasets present
a tradeoff between spatial and temporal resolutions [32]–[34].
The two products are briefly described as follows:

1) MODIS NDVI Time Series is derived from the atmo-
spherically corrected MODIS MOD09GQ (MODIS Surface
Reflectance Daily L2G Global 250 m) products at a spatial
resolution of 250 m. The dataset is publicly available and dis-
tributed through the Vegetation Condition Explorer [35]. The
daily MODIS NDVI was subsequently combined into the 10-
day MODIS NDVI via the maximum-value composite (MVC)
method [36]. The operation is considered with respect to two
objectives, i.e., first, to minimize the effects of clouds and atmo-
spheric constituents [37], and second, to maintain consistency
with the SPOT-VGT dataset in terms of the temporal resolution.
The periods of the compositing process are defined according
to the calendar dates, i.e., from the 1st to the 10th, from the 11th
to the 20th, and from the 21st to the end of each month.

2) SPOT-VGT NDVI Time Series is extracted from the SPOT-
VGT S10 products at a spatial resolution of 1 km [38]. The S10
represents a 10-day global synthesis composited via the MVC
method. The raw S10 products are provided in “Plate Carree
projection,” covering all of Central America. Postprocessing
includes reprojection into the “USA Contiguous Albers Equal
Area Conic projection (USGS version)” [24], and geographi-
cally clipped into regional subsets [39]. Each year from 2002 to
2011, 36 S10 datasets are acquired for this study from January
1 to December 21.

Fig. 5 illustrates examples of NDVI images derived from
MODIS imagery and SPOT-VGT imagery. As we increase the
thresholds for corn proportion, the available pixels (i.e., the
pixels in gray) for calculating fractal dimension of corn fields
decrease significantly. An extreme case is shown in Fig. 5(c),
in which very few pixels remain for the fractal dimension
computation.

B. Evaluation Criteria

In our analysis, a similarity metric for time series and a stabil-
ity measure on the key phenology under diverse data acquisition
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Fig. 5. NDVI images derived from MODIS and SPOT-VGT using three
thresholds. (a) MODIS NDVI (ρ ≈ 0%). (b) MODIS NDVI (ρ = 50%).
(c) MODIS NDVI (ρ ≈ 100%). (d) SPOT-VGT NDVI (ρ ≈ 0%). (e) SPOT-
VGT NDVI (ρ = 50%). (f) SPOT-VGT NDVI (ρ ≈ 100%).

conditions were employed to evaluate the performance of our
method. The rest of this section gives details on these metrics.

1) Similarity Metric for Time Series: A metric that measures
the time-series similarities is critical to the evaluation of fractal
dimension. In this study, we used cosine similarity [40] to mea-
sure the similarity of time series derived from diverse data acqui-
sition conditions (e.g., difference in sensor, spatial resolution,
and level of pixel mixing). The cosine similarity (a.k.a. spec-
tral angle mapper [41]) has been widely used in hyperspectral
remote sensing to measure spectral similarity of hyperspectral
data, which is computed as follows:

Θ(x, y) = arccos

( 〈x, y〉
‖x‖ ‖y‖

)
180
π

(7)

where 〈·〉 denotes the inner product and ‖·‖ computes the norm
of the vector. Because x and y are positive, Θ(x, y) is in [0, 90◦].
Θ(x, y) is proportional to the angle between two vectors x and
y, i.e., the time series. The closer the cosine is to zero, the more
similar the series are.

2) Stability Metric: The time series of fractal dimension is
bimodal in the life cycle of corn crop. The first peak indicates
the emerged stage of corn and the second peak indicates the
harvested stage [11]. At the emerged stage, the corn leaf canopy
shows increasing density. The soil background (depicted low
NDVI value) and green corn leaves (depicted high NDVI value)
are mixed together, which increase the roughness of the NDVI
image. A similar situation occurs during the corn harvest period
when corns are usually gathered from the field in days or longer.
The roughness of NDVI image texture increases because certain
fields are harvested and the others are not. The mixture of bare
soil and the remaining leaves and stalks also increase the rough-
ness of the NDVI image [11]. In this study, the harvested stage
was not considered in the stability measurement, mainly because
it belongs to the developmental stage and is more susceptible to
interference by unconventional farming practices.

To detect the first peak in the annual time series, Timesat [42]
was used in our study. The tool was designed to process time
series data, in which an asymmetric double-Gaussian distri-
bution [43] was used to portray the seasonal growth and de-
cline curves of the corn crop, and to estimate the phenological

parameters. Parameters were preliminarily set as a bimodal
distribution together with approximate timing of the growing
seasons. Timesat can reduce biased noise (in the MVC pro-
cessed data), due to interference of clouds and atmospheric
constituents. The asymmetric double-Gaussian distribution g(t)
is given by

g(t) =

⎧
⎨

⎩
exp

(
− ( t−a

b1
)c1

)
, for t > a

exp
(
− ( a−t

b2
)c2

)
, otherwise

(8)

where a determines the position of the maximum or minimum
with respect to the independent time variable t, b1 and b2 de-
termine the width of the function for the right half and left
half, respectively, and c1 and c2 determine the kurtosis of the
distribution. The details of the algorithm can be found in [43].

The stability of time series was assessed with the erroneous
detection of the emerged stage and the frequency of missed
peaks in the time series. The relative and absolute errors are
evaluated following the root mean square error (RMSE) as fol-
lows:

RMSE =

√∑
t,i,j

(
d̂t,i,j − d̃i,t

)2

n
(9)

where d̂ is the detected day of the emerged stage, n is the
total number of cases, and d̃ denotes the reference day. For the
absolute RMSE, d̃ is the ground truth of the emerged stage;
for the relative RMSE, d̃ is the average day of the predictions
using different input data and features. To compute RMSE, we
aggregate all cases of the study sites (denoted with i), cropland
masking result (denoted with j), and years (denoted with t).

There are cases when the first peak was missed, which hap-
pens particularly when the number of corn pixels is small and
there are strong noise. Hence, we used the number of failed de-
tection as a metric to evaluate the robustness of fractal dimension
on characterizing corn phenology.

C. Texture Features

In addition to the fractal dimension, we include widely used
texture measures in our evaluation. The most commonly used
measures of statistics-based texture descriptors include first-
order (occurrence) statistics and second-order (cooccurrence)
statistics [44], [45]. The first-order statistics measures assess the
spectral properties of individual pixel values without account for
the spatial relations among image pixels; whereas the second-
order statistics take the spatial distribution of spectral values
into account.

Texture measures of variance and entropy derived from re-
mote sensing images have been used to characterize pheno-
logical variation [44]. The time series of variance and entropy
represents a bimodal distribution throughout the corn life cycle,
which is similar to the fractal dimension time series. Although
the fractal dimension, variance and entropy can be used to in-
dicate the heterogeneity of image texture, they place particular
emphasis on different aspects. The variance measures the dis-
persion of an image or ROI around the mean intensity value, and
entropy is a measure of disorder or complexity. Both variance
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and entropy can be further calculated with first- and second-
order statistics.

First-order statistics are derived from the histogram of an im-
age or ROI. The first-order variance (denoted by V1st) describes
the deviation of intensity from the mean. The first-order entropy
(denoted by E1st) is a measure of histogram homogeneity. V1st

and E1st are computed as follows:

V1st =
1

N − 1

N∑

i=1

(xi − μ)2 (10)

E1st = −
G∑

g=1

P (g) logP (g) (11)

where μ = 1
N

∑N
j=1 xj ; N and G are the number of pixels and

distinct gray levels in the entire image or ROI, respectively;
xj is the gray value of pixel j; and P (g) is the probability of
occurrence of gray-level g.

Second-order statistics are derived from the gray-level cooc-
currence matrix (GLCM). The GLCM is a symmetric G × G
matrix, where G is the gray level. The matrix acts as an accu-
mulator such that P (i, j) is the number of occurrences of the
pair of gray levels i and j. Pixel pairs are defined by a displace-
ment vector d = (Δx,Δy) covering the orientation and offset.
Four typical displacement vectors with one neighboring pixel
are (0, 1), (−1, 1), (−1, 0), and (−1,−1). These vectors cor-
respond to orientations of 0◦ (horizontal), 45◦ (right diagonal),
90◦ (vertical), and 135◦ (left diagonal), respectively. Mathemat-
ically, a normalized occurrence matrix P over an n by m image
I is given by

Pd(i, j) =
1
N

m∑

p=1

n∑

q=1

δ(p, q), and (12)

δ(p, q) =
{

1, for I(p, q) = i and I(p + Δx, q + Δy) = j
0, otherwise

where (p, q) is the pixel coordinate in the image; θ is the an-
gle of neighboring pixels, i.e., θ = 0◦, 45◦, 90◦, and 135◦;
and N is the total count of cooccurred gray-level pairs, i.e.,
N =

∑
i

∑
j Pd(i, j). The second-order variance V2nd and en-

tropy E2nd can be formulated based on the GLCM as follows:

V2nd =
∑

i

∑

j

(i − μx)2 + (j − μy )2

2
Pd(i, j) (13)

E2nd = −
∑

i

∑

j

Pd(i, j) log Pd(i, j) (14)

where μx =
∑

i iP (i, j) and μy =
∑

j jP (i, j). Complex tex-
tures tend to have high entropy. If the frequencies of occurrence
in the cooccurrence matrix are equally scattered over the matrix,
high values of entropy can be expected. This uniform scattering
occurs when the largest spread of different pixel intensity occurs
in the spectral image.

IV. RESULTS AND DISCUSSION

A. A Phenology View From the Time Series of Features

In this study, a total of 11 features extracted from remote
sensing images were employed to characterize corn phenology,
which include fractal dimension (FD), first-order variance (V1st),
and entropy (E1st), and second-order variance (V 0

2nd, V 45
2nd, V 90

2nd
and V 135

2nd ) and entropy (E0
2nd, E45

2nd, E90
2nd and E135

2nd ) in four di-
rections. The corresponding time series of the 11 features of
Iowa state in 2011 are illustrated in Fig. 6. Each panel contains
results from five cropland masked images. Using different de-
gree of pixel mixing in cropland masking (i.e., the thresholds in
Table I), following five cases can be derived from the MODIS
and SPOT-VGI data:

1) Mg : MODIS data and corn-presence;
2) Mp : MODIS data and partial mixing;
3) Mc : MODIS data and corn dominated;
4) Sg : SPOT data and corn presence;
5) Sp : SPOT data and partial mixing.
Fig. 6 illustrates the time series of features using different

cropland masked NDVI data. The time series exhibits a bi-
modal distribution. The first peak represents the emerged stage
of corn crop, and the second peak represents the harvested stage.
Fig. 6(d)–(g) depicts time series of four directional features.
Comparing across the panels, e.g., Mp in all eight panels, it is
evident that the time series of various directional features are
very close. This implies that the texture of corn fields in the
SPOT-VGT and MODIS images is mostly isotropic.

A range of abrupt low values exists in all curves of the features
from different cropland masked images in Fig. 6, especially in
the period from January 11 to February 11. Such low values
are possibly caused by the snow coverage. When the ground is
completely covered by snow, the spectral reflectance is mostly
uniform. Therefore, the heterogeneity of corn fields in the re-
mote sensing image is relatively low.

As shown in Fig. 6(b), the first-order variance of Sg changed
near the two peaks. The roughness was more distinct than the
variance with Sp , Mg , Mp , and Mc . In these two time periods,
the crop change was due to the emergence of green corn leaf or
harvesting. The mixture of soil background (with lower NDVI
value) and green corn (with higher NDVI value) increased the
roughness of the image texture. This trend also appears in the
second-order variance, shown in Fig. 6(d)–(g). The mixture of
soil background and corn leaves resulted in two significant peaks
in the variance time series, and the impacts from the common
effects of various sensors, spatial resolution and mixed pixels
yielded great differences in these two stages.

As shown in Fig. 6(c), the first-order entropy of Sg was greater
than that of Mg as a whole, mainly because the distribution of
GLCM of Sg was more uniform than that of Mg . This figure
also shows that the SPOT-VGT imagery of corn crop contains
more noise than that of the MODIS sensor under the condition
of corn-presence pixel. However, if only the neighbor pixels
were considered, the second-order entropy were lower than the
first-order entropy as a whole [see Fig. 6(h)–(k)]. The planting
dates of corn crop were inconsistent across different fields over
an entire state, which resulted in greater first-order entropy.
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Fig. 6. Time series of features in the corn life cycle (taking the data from the state of Iowa for the year 2011 as an example). (a) Fractal dimension (FD); (b) first-
order variance (V1st); (c) first-order entropy (E1st); (d) second-order variance (horizontal) (V 0

2nd); (e) second-order variance (right diagonal) (V 45
2nd); (f) second-order

variance (vertical) (V 90
2nd); (g) second-order variance (left diagonal) (V 135

2nd ); (h) second-order entropy (horizontal) (E0
2nd); (i) second-order entropy (right diagonal)

(E45
2nd); (j) second-order entropy (vertical) (E90

2nd); (k) second-order entropy (left diagonal) (E135
2nd ). The x-axis represents day of year (DOY), and the y-axis indicates

the value of the corresponding feature. The reference tables between DOY and calendar dates can be found at (http://disc.gsfc.nasa.gov/julian_calendar.shtml).

In our results, time series of variance differ greatly, especially
around the two peaks [as shown in Fig. 6(b) and (d)–(g)]. For
instance, in Fig. 6(b), the curve of Sg dramatically deviates
from the other curves. In contrast, the time series of fractal
dimension [as shown in Fig. 6(a)] depict great similarity, i.e.,
the peaks are well aligned, which indicates superior consistency
and robustness to image properties (e.g., spectral characteristics,
spatial resolution, and the degree of pixel mixing).

B. Similarity of the Time Series of Features

In this study, we conducted a pairwise comparison among
the time series from the cropland masked NDVI images using
cosine similarity metric shown in (7). Given the five cropland
masked NDVI images, the possible number of feature pairs is
ten. Yet, comparisons of some pairs are redundant. For instance,
the similarity of Mc and Mg can be derived from the pairs
of Mc and Mp , and Mp and Mg . Therefore, comparisons of

five pairs were conducted, which include Mc and Mp , Mp and
Mg , Sp and Sg , Mp and Sp , and Mg and Sg . The quantitative
measurements of similarity are illustrated in a polar coordinate
system in Fig. 7. Because the texture of corn fields is mostly
isotropic, only results of horizontal direction for the second-
order variance and the second-order entropy are shown. The
evaluation of cosine similarity covers the three states over the
10-year period from 2002 to 2012.

For the fractal dimension depicted in Fig. 7(e), the discrep-
ancy pertaining to the similarity between Mg and Sg is distinct
over the three states. High similarity is primarily in the re-
sults of Illinois, and low similarity is noted in the results of
Iowa. The first- and second-order entropy trends are similar to
the fractal dimension [see Fig. 7(b) and (d)]. In contrast, low
similarity of the first- and second-order variance appears in Ne-
braska [see Fig. 7(a) and (c)]. The similarity between Mg and
Sg is relatively unstable because: 1) both Mg and Sg show full
pixel mixing, and the corresponding image differs in spatial

http://disc.gsfc.nasa.gov/julian_calendar.shtml
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Fig. 7. Similarity of features from different cropland masked images. (a) First-
order variance (V1st); (b) first-order entropy (E1st); (c) second-order variance
(horizontal) (V 0

2nd); (d) second-order entropy (horizontal) (E0
2nd); (e) fractal

dimension (FD). Along the polar angle corresponds to a state in a given year,
and the polar axis indicates the cosine similarity of a specific derived features.
The measurement unit of the polar axis is degree (angle).

resolution (the effects of mixed pixels on each image are not
the same and show uncertainty in the time series); and 2) they
are derived from different sensors; thus, the spectral character-
istics and spatial resolution inevitably affect the measurement
of NDVI, and the effects on the pair are greater than those on
other pairs.

As shown in Fig. 7(e), the highest similarity is observed for
the pair Mp and Mg , followed by the pair Mc and Mp . How-
ever, the curves for the pairs Mp and Mg and Mc and Mp can
be clearly distinguished as having been derived from the fractal
dimension, but the curves for other features are not clear. This
result was obtained because the fractal dimension, entropy, and
variance were estimated by different spatial statistical meth-
ods. Entropy and variance indicate the statistical variation in the
gray-level globally or within a certain directional space within a
neighborhood. In this study, the fractal dimension considers the
difference in gray level within a given neighborhood on differ-
ent scales. In contrast to the first- and second-order entropy, the
spectral characteristics of different imaging devises affect the
fractal dimension to a lower extent than the spatial resolution
and mixed pixels do. In general, the maximum of the similar-
ity of the fractal dimension is 0.88, which is greater than that
of the variance (either first- or second-order variance) and is

Fig. 8. Mean and standard deviation of the detected first peak from the fea-
tures of different cropland masked images. The x-axis marks the state-year
combination and the y-axis presents the day of year. The columns depict the
average day of the detected emerged stage and the error bars show the cor-
responding standard deviation. (a) First-order variance (V1st ). (b) First-order
entropy (E1st ). (c) Second-order variance (horizontal) (V 0

2nd ). (d) Second-order
entropy (horizontal) (E0

2nd ). (e) Fractal dimension.

comparable to that of the entropy (either first- or second-order
entropy).

C. Consistency of the Detected Phenology Stage

The first peak of fractal dimension time series corresponds
to the emerged stage, a key phenology of corn crop. Successful
detection of the first peak is an important indicator of the per-
formance on characterizing corn phenology. Fig. 8 shows the
accuracy of the first peak detection using the derived features.
The x-axis is the state-year combination and the y-axis is the
detected day of the start of the emerged stage. Each column de-
picts the average detected day. The error bar shows the standard
deviation. Each state-year corresponds to five time series, and
only if the first peak was detected, this feature derived from a
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TABLE II
STABILITY OF THE FIRST-PEAK MEASURED BY THE NUMBER OF UNDETECTED

PEAKS AND RMSE

F D V1 s t V 0
2 n d V 4 5

2 n d V 9 0
2 n d V 1 3 5

2 n d

Undetected peaks 10 14 15 15 15 14
Relative RMSE∗ 5.2 20.2 20.6 22.3 20 25.8
Absolute RMSE 8.1 29.3 33.5 32.2 29.4 35.9

E1 s t E 0
2 n d E 4 5

2 n d E 9 0
2 n d E 1 3 5

2 n d

Undetected peaks 20 20 13 20 11
Relative RMSE∗ 5.6 5.4 5.6 5.4 6.4
Absolute RMSE 11.1 10.2 10.1 9.6 11.1

*The unit of RMSE error is day.

specific case of cropland masked images is taken into calcula-
tion of mean and standard deviation. For example, if the first
peaks of Sg and Sp for the first-order entropy were undetectable
in the year 2002 in Nebraska, then these two derived features
are excluded in the mean and standard deviation calculation.

Among the five cases shown in Fig. 8, fractal dimension
exhibits the smallest divergence, which implies the best con-
sistency. The fractal dimension and entropy are better than the
variance. Moreover, for the first-order variance, the earliest date
of mean emerged stage appears on the 77th day of 2008 in Illi-
nois, while the latest is the 193th day of 2009 in Nebraska. The
difference between the earliest and latest corn emerged dates
is up to 116 days, which is severely inconsistent to the actual
agricultural production. Similarly, the high standard deviation
appeared in the second-order variance.

Table II lists the number of the undetected peaks and the cor-
responding relative RMSE of each feature in all states and years.
The undetected peaks appear to be concentrated in the dataset
pertaining to the state of Nebraska. The undetected peaks of
the fractal dimension occur in the time series derived from the
SPOT-VGT sensor with corn-presence pixels (i.e., Sg ). Non-
crop covers such as natural forests are the inevitable factors that
resulted in the misdetection. Although Nebraska ranks high in
terms of cropland coverage in the Corn Belt, cropland pixels in
Nebraska are greatly mixed with natural vegetation in contrast
to that of Iowa and Illinois. As the degree of pixel-mixing in-
creases, the corn phenology becomes more susceptible to the
effects of other crops. The most serious case is the disappearing
of bimodal distribution in the interannual time series. It is evi-
dent that the fractal dimension is the lowest for both the number
of undetected peaks and the relative RMSE compared to other
features.

Table II shows that the frequency of the missed peaks of the
fractal dimension are concentrated in the time series derived
from the SPOT-VGT sensor with the most mixed pixels (i.e.,
Sg ). The spatial resolution of MODIS is 250 m, and that of
SPOT-VGT is 1 km. According to measurements on Google
Earth, the average size of a crop field is 1 km, which means that
a MODIS pixel covers one-sixteenth of a crop field and SPOT-
VGT covers only one field. The fractal dimension derived from
Mg is more heterogeneous than that derived from Sg (see Fig. 7).
In relative terms, the SPOT-VGT pixels are more susceptible
to the interference of mixed pixels than the MODIS. Sg of

Fig. 9. Fractal dimension time series of corn-dominated MODIS 250-m data
and its downsamped 500-m, 750-m and 1-km data. (a) State of Iowa. (b) State
of Illinois. (c) State of Nebraska.

SPOT-VGT introduces more heterogeneous pixels than other
combinations, e.g., Mg , Mp , Mc , and Sp . According to the
Nyquist theorem, the sampling rate should be more than twice
the highest-frequency component of the signal that is measured.
Thus, the MODIS achieved better results than SPOT-VGT in
crop analysis.

We also assessed the absolute RMSE of the first peak char-
acterized by 11 diverse features. NASS’s crop progress reports
(CPRs) were regarded as the ground truth. The CPRs record
the percent complete (area ratio) of crop fields that has either
reached or completed a specific progress stage over a specific
administrative unit. The dataset is distributed through NASS’s
“Quick Stats 2.0” service [46]. In this study, 50% completion of
corn emerged progress indicates the emerged stage, and the
piecewise cubic Hermite interpolating polynomial algorithm
was employed to interpolate the crop progress observations [47].
The details of the data processing can be found in [11] and [48].
The absolute accuracy is presented Table II. It evident that the
fractal dimension yielded the lowest absolute RMSE compared
to that of the other features.

Our proposed algorithm eliminates the effect of irregular
boundary shapes and provides a fractal dimension estimation
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method for NDVI images. The error is primarily caused by
overcounting or undercounting the number of boxes. Generally,
undercounting occurred on a small scale, and overcounting oc-
curred on a large scale if there is a uniform intensity area [49].
However, there are no true fractals in nature, i.e., in applying
the mathematical theory of “exact” fractals to the “approximate”
fractals of nature, errors are inevitable. Despite these limitations,
the fractal dimension provides a critical and reliable measure for
studying phenological patterns.

D. Sensitivity to Spatial Resolution

The spatial resolution is an important practical issue in real-
world applications. To analyze the effect of the spatial resolu-
tion, we conducted experiments using MODIS images at four
spatial resolutions. To simulate the coarse resolutions, we down-
sampled the MODIS with a pixel resolution at 250–500 -m,
750- m, and 1-km resolutions. The downsampling keeps every
ith sample, where i = 2, 3, 4, to create a lower resolution image
at 500 m, 750 m, and 1 km, respectively, in this study.

In our experiments, the degree of pixel mixing is 50%. Fig. 9
illustrates the time series of fractal dimension from 2002 to
2011 in the three states. Each plot consists of four curves that
correspond to the aforementioned four spatial resolutions. The
time series are normalized to have zero mean and unit standard
deviation. It is clear that the curves are mostly overlapping for
each state over a period of 10 years across three states despite
the trivial amplitude difference at the peaks. It is evident that
the time series of fractal dimension from images of various
spatial resolution are very similar. This implies that the fractal
dimension is mostly invariant to the change of image spatial
resolution.

V. CONCLUSION

Fractal dimension-based methods for phenology analysis
have demonstrated competitive effectiveness to per-pixel meth-
ods [35]. A major challenge faced by the computation of frac-
tal dimension, however, is dealing with regions with irregular
ROI. In this paper, we propose a method of estimating frac-
tal dimension. Our method excludes volumes from noncubical
space in the computation of fractal dimension and makes it in-
dependence from size and shape of the ROIs of interest. Hence,
the computation of fractal dimension minimizes the bias from
spatial irregularity that is common in real-world applications.
Evaluation was conducted with NDVI products derived from
MODIS and SPOT-VGT imagery from three states in the USA.
These datasets present a tradeoff between spatial and temporal
resolutions. Our method exhibited consistent performance with
respect to spectral characteristics, spatial resolution, and degree
of pixel mixing.

Our experimental results using the time series demonstrated
that fractal dimension depicts great consistency and invariance
to the change of image properties including spectral character-
istics, spatial resolution, and the degree of pixel mixing. Fractal
dimension considers the difference in gray level within a given
neighborhood on different scales. In contrast to entropy, the
spectral characteristics of different imaging devices exhibited

lower impact to the fractal dimension, which implies its scale
invariance. In general, the maximum of the similarity of the
fractal dimension is 0.88, which is greater than that of the vari-
ance and is comparable to that of the entropy. With respect to
the detection rate of the first peak, fractal dimension exhibits
the smallest divergence, which implies the best consistency. It
is evident that the fractal dimension yielded the lowest num-
ber of undetected peaks and the RMSE (relative and absolute)
compared to other features. In summary, our proposed method
for computing fractal dimension provides a reliable measure for
studying phenology and improves the accuracy of crop phenol-
ogy detection.

Our proposed fractal dimension estimation method is of inter-
est to the communities of image processing and remote sensing,
which provides a novel method for characterizing texture and
can also be used in image segmentation, object tracking, etc.
It presents a new dimension of feature for various ground ob-
jects. With our proposed method, the limitation of employing
irregular ROI is mostly circumvented, which facilitates feature
extraction with a greater degree of accuracy. The results are also
beneficial to practitioners in agriculture and officials of land-
use planning. In our future work, we plan to extend our pro-
posed method and evaluate it in applications such as land cover
classification.
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