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Abstract. Robots have recently gained a great attention due to their potential to work in dynamic and complex environments
with obstacles, which make searching for an optimum path on-the-fly an open challenge. To address this problem, this
paper proposes a Genetic Algorithm (GA) based path planning method to work in a dynamic environment called GADPP.
The proposed method uses Bezier Curve to refine the final path according to the control points identified by our GADPP.
To update the path during its movement, the robot receives a signal from a Base Station (BS) based on the alerts that are
periodically triggered by sensors. Compared to the state-of-the-art methods, GADPP improves the performance of robot
based applications in terms of the path length, the smoothness of the path, and the required time to get the optimum path. The
improvement ratio regarding the path length is between 6% and 48%. While the path smoothness is improved in the range of
8% and 52%. In addition, GADPP reduces the required time to get the optimum path by 6% up to 47%.
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1. Introduction

The advances in commercial fabrication has led
robots into our daily life. The success of modern
robots in applications such as Google Self-Driving
Car [1] and iRobot Vacuum Cleaning robot [2] greatly
depends on their ability to get the optimum routing
path. The path planning problem can be described
as the task a mobile robot navigation in a predefined
space from a starting point A to an ending point B

in such a way that avoids any obstacles [3]. Despite
the great efforts to optimize the robot’s path, many
applications require the robot to work in dynamic
and complex environments with a set of obstacles,
which makes searching for an optimum robot’s path
on-the-fly an open challenge.

∗Corresponding author. Mohamed Elhoseny, E-mails:
mohamed.elhoseny@unt.edu, mohamed elhoseny@mans.edu.eg.

Path planning has been extensively studied in
industrial, civil, medical, and military environ-
ments [3–8]. In dynamic environments, obstacles
have the ability to move and, hence, the map must be
periodically renewed in real time accordingly. Real-
time path planning algorithms should react to the
changes in the environment as well as to dynami-
cally search for an optimum path to the target. A main
objective of these methods is how to find the short-
est distance efficiently. In multiple-query tasks, the
path planning problem gets even more complex [9].
Moreover, difficulty in path planning arises when
the available data about the environment are lim-
ited [8, 10].

Many methods have been proposed to solve such
a problem [4, 7, 12, 32–37], most of which are based
on Heuristic search [11, 12] and pre-computation
algorithms [19, 20]. Heuristic search relies on a
pre-defined function that guides the search process.
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Heuristic search has a low-memory overhead (linear
on graph size) and adapts well to a changing graph.
Pre-computation algorithms compute paths between
points offline; at runtime, generating paths becomes
a simple greedy search. If there is enough memory,
paths can be pre-computed and all shortest paths
between all nodes are stored [11, 12]. Approaches
use leverage principles such as cellular automata,
Dijkstra s algorithm, to plan paths [19, 20]. Others
have used continuous models based on linear matrix
inequalities, potential theory, and B-spline methods
to create collision free paths [19, 21, 23].

The contribution of this paper is an efficient
GA-based method [35, 36] for optimizing the path
planning problem in dynamic environments. The
proposed algorithm aims to construct an optimum
collision-free trajectory from an initial location to
a target location. The proposed method is called
(GADPP) which uses the Bezier Curve to draw the
robot path. By finding the control points which are
required to draw the Bezier Curve, GADPP deter-
mines the optimum robot’s path. To update the path
during its movement, robot receives a signal from
a BS based on alerts that are periodically triggered
by sensors. GADPP utilizes 3-point interpolation
by Bezier curves to generate smooth paths in the
initial population in order to generate the shortest
distance path in the shortest search time. GADPP
works efficiently in static environments and dynamic
environment where the obstacles may be mobile,
appear, disappear, re-appear in real time. In addi-
tion, a run-time mechanism is developed to update the
path according to the new obstacles and the shortest
path found during navigation is redrawn using Bezier
curve.

This paper includes four other sections. Section 2
reviews the recent works related to different path
planning algorithms. Then, Section 3 explains the
proposed GADPP method for path planning opti-
mization in a dynamic environment. After that,
Section 4 validate the performance of GADPP
through different experiments and provides an expla-
nation of its results. Finally, conclusion and future
work are discussed in Section 5.

2. Related works

The previous works in path planning were focused
on improving certain aspects of metrics using vari-
ous paradigms of algorithms like heuristic algorithms
or computational ones [24–28, 31]. However, these

works lacked a collective evaluation and compar-
ison of these metrics and their interdependence,
which forms the base of an efficient path planning
techniques. Design defects and inefficient path plan-
ning strategy in the earlier works had led to the
development of newer path planning algorithms. For
example, a new method based on Parallel Evolution-
ary Artificial Potential Field (PEAPF) in mobile robot
navigation is proposed [32]. This method mainly
makes it possible to deal with dynamic obstacles
based on a flexible method using PEAPF. However,
the required time to get the optimum path repre-
sents the main challenge to that method. An improved
Distance-Bug Algorithm that comprises of two lay-
ers named deliberative layer and the reactive layer
is proposed at [33]. At the first layer, the A* search
is utilized to generate the desired path. The second
layer directs the robot on the path generated by the
first layer using distance-histogram bug algorithm
that guarantee obstacle avoidance. Some drawbacks
faced this method, such as it is unable to avoid obsta-
cles with U and H shape. Moreover, it cannot be used
in complex environments at which the obstacles have
a high mobility feature.

Furthermore, a modified visibility graph roadmap
approach that is followed by finite horizon opti-
mal control for motion planning in an obstacle rich
environment is proposed [34]. Despite the great
performance to avoid the obstacles during their
movement, the path smoothness represents the main
problem of this method. On the other hand, a robot
path planning in 3D space using a binary integer in a
way that could represent the path length is proposed
at [37]. Then, using binary integer programming, the
path-planning problem could be solved. However,
the complexity and the time consumption make this
method inapplicable in many environments.

Based on its great performance in different appli-
cations, intelligent algorithms are applied to solve
the path planning optimization problem as well.
For example, an Intelligent Follow the Gap Method
(IFGM) technique through finding the gap between
obstacles is proposed [38]. Unlike other techniques,
it is specifically developed to avoid obstacles with U

and H shape. In addition, it could avoid local minima
problem and no prior information about the environ-
ment is required. Their work was an extension to a
previous work in [39]. However, IFGM needs more
improvements regarding time efficiency and path
smoothness. Another example is DSFCC [41] which
provides a layered, dual-swarm framework with three
communication channels to get the optimum path.



A
U

TH
O

R
 C

O
P

Y

M. Elhoseny et al. / Optimizing robot path in dynamic environments using Genetic Algorithm and Bezier Curve 2307

This method provides an efficient interaction channel
for cooperation between both Wireless Sensor Net-
work (WSN) [29, 30] and mobile multi-robot swarm.
However, the processing time is the main challenge of
this swarm-based intelligent method. Consequently,
a WSN-aided mobile robot navigation approach is
proposed [42]. This approach provides initial local-
ization of mobile robots, orientation adjustment, path
planning, and position correction with the assist of
RSSI in Grid-pattern WSN. The path smoothness and
the required time to get the optimum path are two big
problems with that approach.

In addition, a navigation algorithm named
DRAPP [40] (Distance and Robustness Aware Path
Planning) which uses the RSSI- distance characteris-
tics and audiometry are proposed to make the robot
travel in the shortest geometrical path to reach the
target node. However, its performance is inconsistent
if it is used in the same environment. Moreover, it
takes a long time to change the robot’s direction in
dynamic environments.

Contrary to our proposed GADPP, most of other
methods proposed in the literature suffer a number of
challenges, i.e., high computational times to get the
optimum path and dynamic environments.

3. Methodology

Optimize the robot path in dynamic environments
is not a trivial task. In a dynamic environment, a robot
cannot pre-determine its path before it starts to move.
For that, we assume that the working field is moni-
tored by a WSN. WSN distributes a set of sensor
nodes to track a set of targets, which are the obsta-
cles in our case as shown in Fig. 1. These sensors
are organized in network clusters and aim to collect
data related to obstacles movement in the field. As
soon as it receives a notification from a sensor node,
the BS starts its work to update the robot path and
inform it with the new one. For that, GADPP will be
run at the BS time to time. In GADPP, the path of the
robot is dynamically decided based on the obstacles’
locations. With the goal of optimizing the distance
between the start point s and the target point t, GA
is employed to search for the most suitable points as
the control points P̃ of the Bezier Curve. Using the
chosen control points, the optimum path β that min-
imize the total distance D̃ between the start and the
target points is selected. In the search for the suitable
Bezier curve’s control points, each point in the field
is represented with a gene that takes 0 or 1. If one,

Fig. 1. An example of the working field with 16 obstacles moni-
tored by WSN clusters.

that means that point is a control point for the Bezier
curve; otherwise, it’s not used in Bezier curve fitting.
In addition, the cells occupied by the obstacles δ are
set to be −1 and cannot be used as control points. The
regular point, i.e., a point that is not an obstacle, is
indicated as p. In addition, sensor nodes are responsi-
ble for monitoring the obstacles positions and inform
the BS of the new position of obstacles in case of
them moved.

3.1. Bezier Curve

Bézier Curves are used in computer-aided design
and are named after a mathematician who used them
in work for the automotive industry. One of the
biggest advantages of the Bezier curve is that the
Bezier curve is also convex if the control point is
a convex polygon, that is, the feature polygon is con-
vex. In addition, it can describe and express free
curves and surfaces succinctly and perfectly. Thus,
Bezier curve is a good tool for curve fitting, and it
can be drawn as a series of line segments joining the
points. These curves make “smooth” paths between
two specified points. To modify the path between two
points, Bézier curves specify in addition to the end-
points additional control points. Generally, the point
x on a Bézier Curve with n control points at parameter
value t can be formulated as the following:

x(t) =
n∑

k=0

xk

(
n

k

)
tk (1 − t)n−k

where k is the control point index. For example,
let we have four control points x0, x1, x2, x3 and let
t ∈ �. We compute a curve point with the following
construction:
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x1
0(t) = (1 − t)x0 + tx1

x1
1(t) = (1 − t)x1 + tx2

x1
2(t) = (1 − t)x2 + tx3

x2
0(t) = (1 − t)x1

0(t) + tx1
1(t)

x2
1(t) = (1 − t)x1

1(t) + tx1
2(t)

x3
0(t) = (1 − t)x2

0(t) + tx2
1(t).

Then, by inserting the first three equations into the
next two, we obtain:

x2
0(t) = (1 − t)2x0 + 2(1 − t)tx1 + t2x2

x2
1(t) = (1 − t)2x1 + 2(1 − t)tx2 + t2x3.

Again, we insert these two equations into the last
one, and after some simplifications, we obtain this
result:

x3
0(t) = (1 − t)3x0 + 3(1 − t)2tx1 + � (1)

� = 3(1 − t)t2x2 + t3x3. (2)

x3
0 is a point on the curve at t. Figure 2 depicts the

geometric construction for t = 1/2.
We note that this is a cubic expression in t, so the

obtained curve is a cubic curve. This curve is also
affine invariant and we need 6 linear interpolations
to compute a point x3

0 on the curve. When t = 0, the
curve is tangent to the line x0x1 and when t = 1, it
is tangent to the line x1x2. To generate such a curve,
we developed a simple algorithm that aims to subdi-
vide the Bezier curve to a sequence of connected line
segments called control polyline. A subdivision algo-
rithm is used to recursively refine the control polyline

Fig. 2. Bezier Curve with four control points.

to generate progressive linear approximations to the
curve. Let P0

i (i = 0 · · · n − 1) be the original ver-
tices of the control polyline. The following procedure
generates one subdivision:

1. Define P1
i (i = 1 · · · n − 1) as the mid-points

of all line segments in the control polyline, i.e.
P1

i = (P0
i−1 + P0

i )/2, (i = 1 · · · n − 1).
2. Similarly, define P2

i (i = 2 · · · n − 1) as the
mid-points of all new line segments formed by
P1

i , i.e. P2
i = (P1

i−1 + P1
i )/2, (i = 2 · · · n − 1).

3. Continue doing the above for each newly
formed polyline, i.e. Pk

i = (Pk−1
i−1 + Pk−1

i )/2,
where k = 1 · · · n − 1, and i = k · · · n − 1.
When k = n − 1, there is only one point left,
the process is then complete.

After this subdivision, the original control poly-
line is divided into two separate control polylines: Pi

i

(i = 0 · · · n − 1), and Pi
n−1 (i = n − 1 · · · 0). Each of

these two polylines represents half of the curve. But
they are now closer to the curve than the original
polyline.

Figure 3 shows a simulated example of the
expected output of GADPP in a field of (a) 10 obsta-
cles distributed in 100 m × 100 m area and (b) 5
obstacles distributed in 50 m × 50 m area. This fig-
ure shows how the control points affect the optimum
path by forming the Bezier Curve. In Fig. 3 (a), the
robot starts at (5, 43) while the endpoint is at (100,
27). There are four control points (shown as black
spots in the field) at (25, 97), (43, 23), (62, 80), and
(81, 5). While in Fig. 3 (b), the robot starts at the
point (5, 17) while the endpoint is placed at (48, 4).
There are two more control points with the start and
the end points. These points are replaced at (17, 33)
and (36, 48).

3.2. Problem formulation

We represent path planning as an optimization
problem with a objective function with constraints as
shown in Equation (5). Our objective function is to
minimize the total distance D̃, where D̃ is the sum-
mation of distances d between the adjacent points
(p1, p2, ... , pi) on the Bezier Curve as shown in
Equation (3).

D̃ =
η∑

i=1

d(pi, pi+1), (3)

where η represents the count of the Bezier Curve’s
points. D̃ can be calculated by integral of Bezier as
the follows:
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(b)(a)

Fig. 3. An example of Bezier Curve in our working field with (a) 10 obstacles distributed in 100 m × 100 m area, and (b) 5 obstacles
distributed in 50 m × 50 m area.

D̃ =
∮

l

P(t) =
∮ n∑

i=1

piBi,n(t)

=
∫ 1

0

√
(x

′2
t + y

′2
t )dt, (4)

where l is the distance between a point p and the
target t.

minimize D̃

subject to

D ≥ r

∀θ ∈ δ ⇒ θ /∈ P̃

∀p ∈ β ⇒ p /∈ δ

s, t /∈ δ.

P̃ /= �.

where D is the distance between two control points.
δ is a set of obstacles θ.

3.3. GADPP

GA consists of three operators. Reproduction is
the process of keeping the same chromosome with-
out changes and transfer it to the next generation.
The input and the output of this process is the same

chromosome. Crossover is the process of con-
catenating two chromosomes to generate a new
two chromosomes by switching genes. The input
of this process is two chromosomes, while its
output is two different chromosomes. A simple
one-point crossover operation for binary coded pop-
ulations have been used. For example, let I =
{s1, . . . , sj, . . . , sn} and I ′ = {s′1, . . . , s′j, . . . , s′n} be
two different indexes in the current population P . The
crossover point was defined by randomly generating
an integer j in the range [1, n]. Then the resulting
crossed indexes are I = {s1, . . . , sj−1, s

′
j, . . . , s

′
n}

and I ′ = {s′1, . . . , s′j−1, sj, . . . , sn}. Mutation is the
process of randomly reveres the value of one gene in
a chromosome. So, the input is a single chromosome
and the output is different one. The integer parameter
to undergo a mutation, let us say sj , is selected ran-
domly. Then it mutates into s′j = 0 if sj = 1 and into
s′j = 1 otherwise.

GADPP consists of two fundamental components.
First, a binary chromosome is used to encode the
selection of control points within the entire field. Sec-
ond, each chromosome is evaluated to make sure that
it is valid to be a possible solution structure following
the predefined constraints. The fitness is then evalu-
ated based on this structure. The optimization goal
is to minimize the distance between the start and the
end points.
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Fig. 4. Chromosome representation.

Each gene in the chromosome represents a pixel
in the field. The value of a gene can be either 1 or 0,
where 1 indicates that the corresponding pixel serves
as the control point and 0 indicates a non-control point
pixel. Figure 4 depicts a chromosome for a field with
25 nodes.

The GA’s fitness function simply consists of a
length of the path D̃. The main objective is to min-
imize D̃. The fitness function is hence defined as
follows shown at Equation (5).

f = 1

D̃
(5)

In addition, Equation 6 is used to calculate the
probability of select (Ps) for each chromosome (�).
While Equation 7 calculates the expected count of
select (π), and the actual count of select for each
chromosome as the following:

Ps(i) = f (�)∑n
i=0 f (i)

(6)

π = f (�)

[
∑n

i=1 f (i)/n]
(7)

where n is the number of the chromosomes in the
population. A new generation of the GA begins with
reproduction. We select the mating pool of the next
generation by spinning the weighted roulette wheel
six times. So, the best chromosome representation
gets more copies, the average stays even, and the
worst die off and will be excluded from further pro-
cessing.

Algorithm 1 summarizes the steps of GADPP. Ini-
tial values for the count of obstacles N, the count
of distributed sensors on the field Ns, the start point
SP , the target point TP , crossover ratio α, and muta-
tion ratio β are specified. The working field is well
defined by placing each sensor node si and obstacle
oj in different location li and lj , respectively. A pool
of chromosomes is randomly generated and each of
them is validated to make sure that its correspond-
ing Bezier Curve β̈κ clears all obstacles. In addition,

the fitness of each chromosome is calculated and the
chromosome that gives the shortest path is selected.

Algorithm 1 GADPP Working Steps
1: Initialize N, NS , SP , TP , α, and β

2: Generate a set of Sensors 	S, S = {s1, s2, . . . , sNs }
3: Generate a set of Obstacles 	O, 	O = {o1, o2, . . . , oN }
4: ∀ [ si ∈ 	S & oj ∈ 	O ] set li & lj
5: Generate a pool of P chromosomes Q̂ = {q1, q2, . . . , qP }.
6: ∀qi ∈ Q̂, Generate a Bezier Curve β̈κqi

7: ∀ β̈κqi
, Validate β̈κqi

using l

8: Evaluate the fitness of each qi ∈ Q̂.
9: for z = 1, 2, . . . , Z do

10: Q̃ ⇐ ∅
11: for p = 1, 2, . . . , P do
12: Randomly select qa, qb ∈ Q̂ (a /= b) based on the nor-

malized fitness π

13: Cross over qa and qb Based on a cross point α

14: Perform mutation on q′
a and q′

b
according to β

15: Evaluate f (q̃a) and f (q̃b).

16: ˜̂
Q ⇐ ˜̂

Q ∪ {q̃a, q̃b}
17: end for
18: Q̂ ⇐ {qi; qi ∈ ˜̂

Q and f (qi)}
19: end for
20: Return the chromosome q∗ that satisfies

u∗ = arg max
u

f (q), q ∈ Q̂

To construct the path, a Bezier Curve is drawn
using the proposed control points. Then, the vali-
dation process is used to remove the invalid path,
i.e., the path that intersects with an obstacle. Figure 5
illustrates the validation process that leverages the
field properties. In the process of GA optimization,
a new chromosome represents the proposed structure
for the path. Each gene in the chromosome defines the
expected role of the corresponding point, i.e., whether
it serves as a control point or not. The process con-
sults ‘Obstacles’, ‘Distance Threshold’, and ‘Valid
Path’ sub-processes. The role of ‘Obstacles’ sub-
process is to determine whether the point can serve
as a control point (one represents serving as control
point; otherwise, regular point). While the ‘Distance
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Fig. 5. An example of the validation process with 10 points, r = 2.5, and three obstacles.

Threshold’ sub-process is used to test whether that
distance between any two control points in the pro-
posed structure is longer than the radius r or not. Then
‘Valid Path’ sub-process checks if the path intersects
with an obstacle. The validation process determines
if a chromosome complies with the constraints and
hence retained in the offspring pool; otherwise, the
chromosome is abandoned.

4. Experimental results and discussion

To evaluate GADPP, we used a set of well-known
benchmark maps. These maps were collected from
repository motion planning maps of the Intelligent
and Mobile Robotics Group from the Department of
Cybernetics, Czech Technical University in Prague1.

In our experiments, ten different planar environ-
ments were used to evaluate GADPP. Figures 6 and 7
show the benchmark maps. Moreover, Table 1 lists
the ID, name, and size of each map. The ID of the
map is used to uniquely identify the map in our dis-
cussion. In our experiments, a dynamic environment
allows to any obstacle to change its location during
the robot moving. Accordingly, the Basestation runs
the GA to update the robot path and notify it through
the sensor nodes.

1Maps are available at httpimr.felk.cvut.czplanningmaps.xml

(1) (2) (3)

(4) (5) (6)

Fig. 6. Set of benchmark maps that were used in our experiment.

Tables 2, 3, and 4 list the results that compare
between GADPP and the state-of-the-art methods in
terms of the path length, the smoothness of the plan,
and the required time to generate the optimum path
using the different benchmark maps. In Table 2, the
path length is the average of ten experiments for each
map. The path length is calculated based on the count
of points on the curve. The length is incremented by
1.5 if the robot moves diagonally. Otherwise, its value
is incremented by 1. As shown, GADPP yielded the
shortest length. One of the main goals of the robot
path planning problems is to get the optimum smooth
path. Smoothness prevents a robot from keep going
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(7) (8) (9)

(10)

Fig. 7. Set of benchmark maps that were used in our experiment.

Table 1
Benchmark maps that are used in our experiments

ID Name Size ([m × m])

1 T 30 10.0 × 10.0
2 back and forth 36.4 × 28.8
3 Clasp Center 20.0 × 20.0
4 Complex 20.0 × 20.0
5 Gaps 20.0 × 30.0
6 Geometry 20.0 × 20.0
7 Hidden U 35.0 × 30.2
8 Slits easy 36.5 × 35.0
9 square spiral 20.0 × 20.0
10 Jari huge 28.0 × 28.0

up and down. As a result, it reduces the required
distance to arrive to the goal. In addition, it avoids
the time consumption. The path smoothness can be
calculated based on the number of changes in the
movement directions. In our experiments, integral

of squared derivative [22] is used to calculate the
path smoothness. As noticed from Table 2, our pro-
posed GADPP achieves an improvement in between
6% and 48% with respect to the second shortest
path length (underlined in Table 2). Moreover, the
greatest improvements was achieved in scenarios of
map 9, 10, and 5. These maps have more compli-
cated environments compared to other maps. Table 3
presents a description for path smoothness using 10
different benchmark maps. As shown in Table 3, the
proposed GADPP has the highest smoothness factor
compared to DRAPP, IFGM, and DSFCC. It achieves
an improvement in between 8% and 52% according
to the 2nd best technique (underlined at Table 3).

Table 4 lists the average time using 10 bench-
mark maps. Using GADPP, the time was reported
at the last GA generation. The average time used
by GADPP is compared with the running time of
the other methods as shown in Table 4. Note that
the most time-consuming process is evaluating the
fitness, which can be implemented with parallel pro-
gramming to improve efficiency. The improvement is
in between 6% in map 8 and 45% in map 2.

A set of experiments was conducted to evaluate
GADPP’s performance in dynamic environments. In
these experiments, different counts of obstacles are
randomly placed in a field monitored by a WSN. Fig-
ure 8 shows two examples of such fields with (a) 10
obstacles distributed in 100 m × 100 m field and (b)
5 obstacles distributed in 50 m × 50 m field. In all
experiments of Fig. 8(a), the start and the end points
are (0,0) and (100,100), respectively and are at (0,0)
and (50,50), respectively, in Fig. 8(b).

Table 5 shows the average time to get the opti-
mum path in the dynamic environment. The second

Table 2
Path length

Map ID 1 2 3 4 5 6 7 8 9 10

DRAPP 25 54 28 39 41 46 51 62 47 62
IFGM 27 50 33 29 46 42 38 71 62 59
DSFCC 22 56 41 40 37 33 42 69 52 68
GADPP 19 37 25 27 23 31 29 42 24 33

Improvement 13% 26% 10% 6% 37% 6% 23% 32% 48% 44%

Table 3
Path smoothness

Map ID 1 2 3 4 5 6 7 8 9 10

DRAPP 6 3.5 3 2.4 2.6 3.9 5 3.5 6 5.2
IFGM 7 4.6 4.8 5 3.1 3 7 4.4 7 6.7
DSFCC 6.8 5.1 3.3 2.7 2.9 4.7 5.2 4.4 4.2 5.1
GADPP 8 7.8 6.6 5.9 3.4 5.5 7.6 6.2 8.4 7.3

Improvement 14% 52% 37% 18% 9% 17% 8% 40% 20% 8%
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Table 4
Run time

Map ID 1 2 3 4 5 6 7 8 9 10

DRAPP 1.50 3.62 1.92 2.09 2.54 1.91 2.74 3.01 2.80 2.94
IFGM 1.26 2.78 1.81 2.00 2.03 3.24 2.88 2.98 2.22 2.47
DSFCC 0.90 1.94 1.09 2.14 1.41 1.92 0.98 2.24 1.05 1.04
GADPP 0.52 1.05 0.75 1.05 0.94 1.27 0.79 2.10 0.79 0.76

Improvement 40% 45% 31% 47% 33% 33% 19% 6% 24% 26%

(b)(a)

Fig. 8. Dynamic field with (a) 10 obstacle distributed in 100 m × 100 m area, and (b) 5 obstacle distributed in 50 m × 50 m area.

Table 5
Average time (Avg.) and standard deviation (STD) (in seconds) to determine the robot

path using GADPP with obstacles mobility

Field Static Dynamic
Area 50 m × 50 m 100 m × 100 m 50 m × 50 m 100 m × 100 m

Avg. 1.81 2.03 3.64 3.86
STD 0.22 0.19 1.66 2.01

Table 6
Path smoothness in dynamic field

Field Static Dynamic
Area 50 m × 50 m 100 m × 100 m 50 m × 50 m 100 m × 100 m

Avg. 7.5 9.2 5.04 7.72
STD 0.15 0.20 0.66 0.28

raw depicts the standard deviation. Due to the obsta-
cles mobility during the robot movement, the required
time to reach the target is longer than the required
time in case of a static field. Depending on the
obstacles movement, the new path of the robot is
determined. For that, the STD increases in dynamic
environments.

Table 6 compares the performance of GADPP in
a static and a dynamic environment in terms of the
path smoothness. The average and the STD of ten
experiments are listed. As noticed, the smoothness is
decreased in the dynamic case due to the unexpected
movement of the obstacles. However, the STD shows
the consistency of the results.
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Table 7
Path length in dynamic field

Field Static Dynamic
Area 50 m × 50 m 100 m × 100 m 50 m × 50 m 100 m × 100 m

Avg. 88.5 167 109 207
STD 0.34 0.40 1.03 1.25

(b)(a)

Fig. 9. An example of the optimum path given by GADPP in a static field with (a) 10 obstacles distributed in 100 m × 100 m area, and
(b) 5 obstacles distributed in 50 m × 50 m area.

(b)(a)

Fig. 10. An example of the optimum path given by GADPP in a dynamic field with (a) 10 obstacles distributed in 100 m × 100 m area, and
(b) 5 obstacles distributed in 50 m × 50 m area.
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Table 7 shows the path length for two different
cases, i.e., static and dynamic environments. The path
length is increased by 1.5 in the case of diagonal
moving, while it is increased by one otherwise.

Figure 9 illustrates an example of the optimum
solution in a static field for both of (a) field with
10 obstacles distributed in 100 m × 100 m area and
(b) 5 obstacles distributed in 50 m × 50 m area. As
shown in Figs. 9 (a) and 9 (b), GADPP gets the con-
trol points that make the Bezier Curve closer to the
straight line to get the shortest path from the start to
the target point. In addition, the paths demonstrate
that GADPP generates a smooth path.

Figure 10 shows an example of a dynamic field (a)
with 10 obstacles distributed in 100 m × 100 m area
and (b) with 5 obstacles distributed in 50 m × 50 m
area. Compared to the static fields in Fig. 9, the
optimum path is a little bit longer. That is due to
the change in the obstacles places during the robot
movement. When obstacle moves, the path is updated
accordingly based on Bezier Curve.

5. Conclusions and future work

Due to its urgent need in different applications,
robots gained more attention as a research challenge.
Nowadays, path planning in dynamic environments
is a crucial problem faced in many robotic tasks.
Real-time path planning algorithms should react to
the changes in the environment as well as to dynam-
ically search for an optimal path to the target. In this
work, we proposed a new algorithm called GADPP
which works in a dynamic environment to get the
robot path using the Bezier Curve. The working field
is monitored by a WSN to reflect any change in
the environment, such as obstacle movement. The
improvement ratio of GADPP regards to the path
length was between 6% and 48%. While the path
smoothness was improved in the range of 8% and
52%. In addition, GADPP reduced the required time
to get the optimum path by 6% up to 47%. In
the future, we are planning to apply our proposed
GADPP method on the 3D environment. In addition,
more experiments will be conducted to evaluate the
performance in different applications.
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