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Abstract—Polarimetric synthetic aperture radar (SAR) images
usually contain a mixture of homogeneous and heterogeneous
regions, which makes estimation of the coherency matrix a very
challenging task. In this paper, we propose an adaptive coherency
matrix estimation method that employs local heterogeneity co-
efficient and leverages the sample covariance matrix estimation
to the homogeneous components and the fixed-point estimation
to the heterogeneous components. Evaluations were conducted
with synthetic polarimetric data and real-world SAR imagery,
including UAVSAR, RADARSAT-2, and ESAR. Our experimental
results demonstrated that the heterogeneity coefficient effectively
characterizes the scattering property of ground objects, which
enables adaptive estimation of the coherency matrix in high-
resolution polarimetric SAR imagery. Our method was able to
handle single- and multilook polarimetric SAR imagery grace-
fully. Compared with the sample covariance matrix estimator, the
fixed-point estimator, and the Lee sigma filtering, our method
achieved the best performance for retaining the spatial structure,
suppressing speckles, and preserving polarimetric information of
SAR imagery with different degrees of heterogeneity.

Index Terms—Coherency matrix, heterogeneity coefficient, high
resolution, matrix estimation, polarimetric synthetic aperture
radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) systems have been
widely used for global Earth observation because of their

all-day/all-weather capability and penetration capability. With
the sensors being able to emit or receive polarized orthogonal
radar waves, polarimetric SAR information allows the dis-
crimination of different scattering mechanisms, generally using
polarimetric target decompositions. However, inherent speckle
[1] degrades the performance of polarimetric decomposition
and target detection [2] and hinders image interpretation and
analysis [3].
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To reduce speckles, image filtering has been employed.
Lee et al. [4] developed a polarimetric SAR filter that uses
edge-aligned nonsquare windows and a local statistic filter.
A later work of Lee et al. [5] proposed an extended Lee
sigma filtering method by computing the sigma range based
on the theoretical speckle distributions and utilizing a target
signature preservation technique. To take into account the phys-
ical scattering process, T11, T22, and T33 are used to select
pixels within the sigma ranges. Pixels within all three ranges
are included in the application of the minimum mean square
error filter to retain fine details. Ding et al. [6] developed a
speckle reduction method based on structural decision and a
hybrid polarimetric decomposition. Pixels are separated into
three categories: bright, dark, and common targets. To protect
the polarimetric property, dark and common targets are further
separated into four scattering classes, and a dark or a common
pixel centered in a sliding window is filtered. Pixels in the same
and the neighboring scattering clusters from the same structural
category are used to filter. The method differentiates ground
objects, and the polarimetric properties are preserved.

In addition to filtering-based methods, coherency (or covari-
ance) matrix estimation has been studied, which is rooted in
the characterization of the scattering properties of objects [7].
In medium- or low-resolution polarimetric SAR data, targets of
interest require a multivariate statistical description due to the
combination of coherent speckle and random vector scattering
effects [8]. The scattering vectors from a homogeneous region
can be modeled with Gaussian distribution, and the correspond-
ing coherency matrices follow a complex Wishart distribution
[9]. In this case, before SAR image analysis, e.g., incoherent
decompositions, the underlying coherency matrix of the targets
needs to be estimated by the sample covariance matrix (SCM)
estimator, which is equivalent to the maximum-likelihood (ML)
estimator [3], [10]. Improvements to the SCM method have
been proposed. Chen et al. [11] developed a double similarity
test that uses metrics derived from polarimetric and interfero-
metric information. The test allows a relative large searching
window to recruit a sufficient number of homogeneous pixels
for coherency matrix estimation, which is also applicable to
other unbiased estimators.

The high-spatial-resolution polarimetric SAR images, due to
the significantly reduced number of scatterers within a reso-
lution cell, are greatly affected by the heterogeneity [12]. The
heterogeneity is usually modeled with the product of a texture
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random variable and a Gaussian speckle random vector [13],
namely, a spherically invariant random vector (SIRV) model
[14]. Based on the SIRV model, Gini and Greco [10] proposed
an approximate ML estimator for the normalized underlying
matrix using the recursive algorithm, which is known as a
fixed-point (FP) estimator [3], under the unknown deterministic
texture. Pascal et al. [15] demonstrated the uniqueness and
convergence of this recursive algorithm for admissible initial
conditions. Vasile et al. [3] further derived the conventional
underlying matrix estimator by estimating the power and nor-
malized underlying matrix and verified that the FP estimator
achieves greater accuracy than the SCM estimator in heteroge-
neous imagery.

In practice, high-resolution polarimetric SAR images usually
contain a mixture of homogeneous and heterogeneous regions.
The complexity makes estimation of the underlying coherency
matrix a very challenging task using the aforementioned meth-
ods. To improve the estimation of the coherency matrix, an
adaptive method is needed that accounts for different degrees
of heterogeneity.

In this paper, we propose a method that estimates the co-
herency matrix adaptively according to the heterogeneity co-
efficient. This heterogeneity is measured using a polarimetric
whitening filter (PWF) [16] based on the local coefficient
of variation, which describes the degree of heterogeneity of
local areas. Our method employs local heterogeneity coeffi-
cient and leverages the advantages of SCM estimation to the
homogeneous components and of fixed-point estimation to the
heterogeneous components. The optimal coherency matrix is
a weighted summation of the estimations to the mixture of
scattering components. Our method is also extended to handle
both single- and multilook polarimetric SAR data.

The remainder of this paper is organized as follows.
Section II introduces the heterogeneity coefficient and presents
our adaptive coherency matrix estimation (ACoME) method for
single- and multilook polarimetric SAR imagery. Section III
describes our synthetic data and real-world polarimetric SAR
imagery and discusses the experimental results. Section IV
concludes this paper with a summary.

II. ADAPTIVE COHERENCY MATRIX ESTIMATION

Polarimetric SAR data are available in two forms: the single-
look scattering vector and the multilook polarimetric coherency
matrix.

Each resolution unit of a fully polarimetric SAR is described
by a 2 × 2 complex scattering matrix S, i.e.,

S =

[
SHH SHV

SVH SVV

]
(1)

where each element represents a complex scattering coefficient;
and H and V denote the horizontal and vertical polarization
directions, respectively. When reciprocity holds, the cross po-
larizations are equal, i.e.,

SHV = SVH. (2)

In such a case, the scattering matrix becomes symmetric and
can be reduced to a 3-D single-look scattering vector based on
the complex Pauli spin matrix basis set, i.e.,

k =
1√
2
[SHH + SVV SHH − SVV 2SHV]

T (3)

where [·]T denotes the transpose of a matrix.
For speckle reduction, an L-look coherency matrix, which is

denoted by T , is computed using the average of the scattering
vectors of the neighboring pixels as follows:

T =
1

L

L∑
i=1

kik
H
i (4)

where ki is the scattering vector, kH
i is the conjugate transpose

of ki, and L is the number of looks.
In the rest of this section, we briefly review the SCM and

FP estimators. We then introduce the heterogeneity coefficient,
followed by our proposed adaptive coherency matrix estimator.

A. SCM Estimator

For a single-look polarimetric SAR image, the elements of
a vector are generally modeled with a multivariate zero-mean
complex Gaussian random process. The probability density
function (pdf) is given by the following expression:

pd(k|Σ) =
1

πd|Σ|e
−kHΣ−1k (5)

where Σ = E[kkH ] is the expectation of the underlying co-
herency matrix, | · | denotes the matrix determinant, and d
is the dimension of the target vector (d = 3 for monostatic
polarimetric SAR acquisitions).

According to (5), a Gaussian stochastic process is character-
ized by the coherency matrix. Following this model, SCM is
the ML estimator of the polarimetric coherency matrix, which
is the sample covariance matrix obtained by replacing the mean
with the spatial averaging, i.e.,

ΣSCM = 〈kkH〉N (6)

where 〈·〉 denotes sample averaging, and N is the number of
samples.

For a multilook polarimetric SAR image, if the scattering
vectors in (6) are independent, then T follows complex Wishart
distribution [9], and its pdf is

p(T |Σ) = LLd|T |L−d

R(L, d)|Σ|L e−LTr(Σ−1T ) (7)

where Tr(·) denotes the trace of a matrix, and

R(L, d) = πd(d−1)/2Γ(L)Γ(L− 1) · · ·Γ(L− d+ 1) (8)

where Γ(·) is the gamma function. Hence, the SCM estimator
is the ML estimator of the coherency matrix, as follows:

ΣSCM = 〈T 〉N . (9)
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B. FP Estimator

The Gaussian and Wishart models serve well for homoge-
neous regions, whereas for heterogeneous regions, the SIRV
model is usually used. The coherency matrix T is modeled as
the product of a random variable τ and an independent random
matrix X , i.e.,

T = τX (10)

where X is the fully developed speckle component and is
modeled by Wishart distribution with the covariance matrix pa-
rameter M = E[X ]. τ characterizes the spatial variations in the
radar backscattering. This model assumes that all polarizations
(in linear or Pauli basis) share the same texture characteristics.

To create such a model, M is normalized such that the trace
of M is a constant, i.e., Tr(M) = d. The normalized matrix M
reveals polarimetric diversity. The total power is a function of
τ , as follows:

P = Tr (E[T ]) = Tr (τE[X ]) = τTr(M) = τd. (11)

The pdf of T can be determined by the following integration:

p(T ) =

+∞∫
0

LLd

τLdΓd(L)

|T |L−d

|M |L e−
L
τ Tr(M−1T )p(τ)dτ (12)

where p(τ) is the texture pdf associated to the SIRV model,
and M can be estimated with the ML method. Gini and Greco
[10] derived the approximate ML estimation of M for single-
look polarimetric SAR data under the unknown deterministic
variable τ .

Given N samples Ti, i ∈ {1, 2, . . . , N}, the ML estimation
for pixel i, which is denoted by τi, is given by

τi =
Tr(M−1Ti)

d
. (13)

The normalized coherency matrix of deterministic texture is
recursively computed as follows:

M̂FP(t+ 1) =
d

N

N∑
i=1

Ti

Tr
(
M̂FP(t)−1Ti

) . (14)

The recursion is initialized with an identifying matrix, and
the error is defined by

εFP(t) =

∥∥∥M̂FP(t+ 1)− M̂FP(t)
∥∥∥
F∥∥∥M̂FP(t)

∥∥∥
F

(15)

where ‖ · ‖F denotes the Frobenius norm, and t denotes the
number of recursion.

The normalized coherency matrix estimation is independent
of the total power. According to (11), (13), and (14), the ML
estimation of the power under the unknown deterministic τ is
computed as follows:

P̂ = Tr
(
M−1

FPT
)
. (16)

Following (10), we have the coherency matrix of the FP
estimator for multilook polarimetric SAR data, i.e.,

ΣFP =
P̂

d
MFP. (17)

When L = 1, the FP estimator reduces to the solution for
single-look polarimetric SAR data [3].

C. Heterogeneity Coefficient

The coefficient of variation (CV) has been used as an index of
homogeneity of SAR images [13]. Lopes et al. [17] introduced
a CV-based method to filter SAR speckle adaptively. The CV
CI is defined as the ratio of the standard deviation σI to the
mean Ī of a local region, which is defined by a window of size
g in a SAR image, i.e.,

CI =
σI

Ī
. (18)

The intensity I follows Gamma distribution in a homogeneous
area [18], and CV is equal to

√
1/L. On the other hand, in

heterogeneous regions, CV is greater than
√
1/L.

Based on the PWF [16] and the multilook PWF [19], the
scattering vector k (or coherency matrix T ) can be mapped to
w as follows:

w = kHΣ−1k or w = Tr(Σ−1T ). (19)

w is scale invariant due to the normalized Σ, which is estimated
using the SCM estimator described in (6) or (9). The vth
moments of w are computed as follows [20]:

E[wv] =
E[τv]

E[τ ]v
1

Lv

Γ(Ld+ v)

Γ(Ld)
(20)

where v ∈ �+. The expectation of w is scale invariant and
is equal to the dimension, i.e., E(w) = d. In a homogeneous
region, τ is a constant; the CV of w is

√
1/Ld. The CV of w

increases as heterogeneity increases. Hence, we use the CV of
w to describe the heterogeneity of the region, i.e.,

Cw =
σw

d
(21)

where σw denotes the standard deviation of w. Since d is a
constant, the degree of heterogeneity of the local area in a
polarimetric SAR image is proportional to σw, i.e.,

C = dCw = σw . (22)

To handle different degrees of heterogeneity, thresholds
C− and C+ are used to process the estimation adaptively, as
follows.

1) For homogeneous regions that have the heterogeneous
coefficient less than C−, i.e., C ≤ C−, the coherency
matrix is close to the SCM estimation.

2) For highly heterogeneous regions that have the hetero-
geneous coefficient greater than C+, i.e., C ≥ C+, the
coherency matrix is close to the fixed-point estimation.
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3) For regions with a mixture of homogeneous and hetero-
geneous components that have the heterogeneous coeffi-
cient in between C− and C+, i.e., C− < C < C+, the
coherency matrix is a combination of SCM estimation
and fixed-point estimation.

According to (20) and (22), in a homogeneous area, the
threshold C− =

√
d/L. Determining the threshold C+ is more

challenging. It varies according to the images under processing
and is also influenced by the objective of the expected outcome.
A lower C+ allows less distortion to the details, whereas a
higher C+ is usually applied if speckle suppression is pursued.
In the previous research, thresholds have been proposed. For
instance, CT =

√
1 + (2/L) proposed by Touzi et al. [21]

is a threshold for edge detection, which is independent from
the dimension. In the polarimetric case, CT =

√
d2 + (2d/L)

based on (19), weighs the dimension much greatly. That is,
CT is proportional to d and inversely proportional to

√
L. We

propose a threshold that imposes equal proportion to d and L,
and hence, the two thresholds are computed as follows:⎧⎨

⎩
C− =

√
d
L

C+ =
√

λd
L

(23)

where λ ≥ 1 is a margin parameter that decides the range of the
mixture of homogeneous and heterogeneous components. It is
a constant and is specified empirically. Detailed discussion is
presented in Section III-F.

The calculation of (23) needs to estimate the equivalent num-
ber of looks (ENL), which describes the degree of averaging
of polarimetric SAR images. For single-look polarimetric SAR
data, L = 1; for multilook polarimetric SAR data, the ENL is
estimated using matrix log-cumulants [22] by

d−1∑
v=0

ψ(v)(L̂− v)− d ln L̂ = 〈ln |T |〉 − ln |Σ| (24)

where ψ(v)(·) is the vth-order multivariate polygamma func-
tion. In the estimation process, the estimation value L̂ of the
constant L can be obtained by selecting samples in homo-
geneous areas without texture from polarimetric SAR image.
To estimate the ENL, samples are selected from the image
according to the local heterogeneity coefficient. Regions with
the lowest local heterogeneity coefficient are identified, and the
size of the candidate region must be greater than 900 pixels.
In our method, more than one region is selected to make esti-
mation, and the average is used as the final estimation of ENL.
Among many ground objects, calm lakes and artery roads are
the primary choices for the computation.

D. ACoME Method

Our ACoME method is based on local heterogeneity co-
efficient and leverages the advantages of SCM estimation to
the homogeneous components and of fixed-point estimation to
the heterogeneous components. The optimal coherency matrix
estimation is a weighted summation of the estimations to the
mixture of scattering components.

Fig. 1. Estimation error of synthetic polarimetric data. (a) SCM and FP.
(b) SCM minus FP.

The weights depend on the heterogeneity coefficient C. To
determine the weights, the estimation error ε of the coherency
matrix is computed as follows [3]:

ε =
1

N

N∑
i=1

‖M̂i −M ∗‖F
‖M ∗‖F

(25)

where M ∗ represents the reference normalized coherency ma-
trix for data simulating, and N is the number of samples.

Fig. 1(a) illustrates the change of the estimation error ε with
respect to the heterogeneity coefficientC. The error of the SCM
estimator increases with the increase of C, whereas the error of
the FP estimator remains mostly unchanged. The difference of
the errors is shown in Fig. 1(b), which is mostly linear. When C
is small, the SCM estimator outperforms the FP estimator, and
at a certain point, the error from SCM surpasses that from FP.

Intuitively, the intersection of the estimation error by the
SCM and FP methods, as shown in Fig. 1(a), indicates a
possible way of combining the coherency matrix estimations.
However, in practice, such intersection is unnecessarily a clear
cut. Multiple divisions of the heterogeneity coefficient are
needed to characterize the transition region. Hence, the optimal
coherency matrix can be achieved with the summation of the
homogeneous and heterogeneous components as follows:

T =
∑
i

βiTi (26)

where Ti is the estimation of the coherency matrix given a
heterogeneity coefficient, and βi is the weight. In this paper, we
divide the entire range of the heterogeneity coefficient into three
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Fig. 2. Examples of our experimental images. (a) Synthetic image. (b) L-band UAVSAR. (c) C-band RADARSAT-2. (d) L-band ESAR.

regions with the two thresholds given in (23), and the weights
are computed as follows:

β =

⎧⎪⎨
⎪⎩
0, C ≤ C−

C−C−

ΔC , C− < C < C+

1, C ≥ C+

(27)

where ΔC is the range of the transition region of the hetero-
geneity coefficient from homogeneous SAR to heterogeneous
SAR. Hence, our proposed adaptive estimator consists of a
linear combination of two components, as follows:

T = (1− β)Ṫ + βT̈ (28)

where Ṫ denotes the estimation from the homogeneous com-
ponents, and T̈ denotes the estimation from the heterogeneous
components. In our implementation, the SCM method was used
to estimate Ṫ , and the FP method was used to estimate T̈ . It
is proven that the SCM and FP estimators are unbiased [23].
According to (28), it is easy to prove that the linear combination
of the SCM and FP estimators is also unbiased. Algorithm 1
summarizes our ACoME method.

Algorithm 1 ACoME algorithm.

1: INPUT: polarimetric SAR image I and window size g.
2: OUTPUT: coherency matrix T .
3:
4: for I(x, y) ∈ I do
5: Compute C(x, y) following (19) and (22) with the

given g.
6: end for
7: Compute C− and C+ following (23).
8: for I(x, y) ∈ I do
9: Compute weight β(x, y) given C(x, y) following (27).

10: Compute coherency matrix for homogeneous compo-
nent Ṫ following (6) (single look) or (9) (multilook).

11: Compute M̂FP and P̂ following (14) and (16).
12: Compute coherency matrix for heterogeneous compo-

nent T̈ following (17).
13: end for
14: The coherency matrix is the linear combination of Ṫ and

T̈ as follows:

T = (1 − β)Ṫ + βT̈ .

III. EXPERIMENTAL RESULTS

A. Experimental Data and Settings

To quantitatively evaluate our proposed method, synthetic
polarimetric SAR data were created. To our best knowledge,
Wishart distribution [9] has been used for generating homoge-
neous SAR imagery, whereas K-distribution [24] is used to sim-
ulate heterogeneous regions in SAR imagery. In K-distribution,
the shape factor α determines the degree of heterogeneity of the
synthetic data [20], i.e.,

α =
Ld2 + d

Lσ2
w − d

. (29)

There is a correspondence between α and C, since σ2
w is

equal to the square of C, which means that one can obtain
synthetic data of specific C by modifying α. In our synthetic
SAR data, as shown in Fig. 2(a), we varied α to create regions
of different heterogeneities. Each synthetic image consists of
multiple regions that are of different geometric shapes and
degrees of heterogeneity. The schematic is shown in Fig. 7(b).
To simulate ground objects such as roads and rivers, narrow
regions were created in the synthetic imagery.

In addition to the synthetic data sets, we used real-world
SAR imagery from three different sources as follows: 1) L-band
UAVSAR data of Hayward in the U.S. by the Alaska Satellite
Facility acquired on February 12, 2014; the size of the image is
2500 × 2500 pixels, with a spatial resolution of approximately
4.997 m × 7.2 m (range × azimuth), as shown in Fig. 2(b);
2) C-band RADARSAT-2 fine quad-polarization data of
Flevoland, Holland, acquired on April 2, 2008; the size of the
image is 800 × 1200 pixels, with a spatial resolution of 12 m ×
8 m (range × azimuth), as shown in Fig. 2(c); 3) L-band ESAR
images of Oberpfaffenhofen, Germany, which are single look,
with a spatial resolution of 1.5 m × 0.89 m (range × azimuth);
the size of the image is 1540 × 2816 pixels, as shown in
Fig. 2(d).

To analyze polarimetric information from coherency matrix,
target decomposition was employed in our evaluation. There are
a number of strategies to evaluate the effects of various types
of ground reflectors [25]–[29]. A review of model-based target
decomposition is available in [30]. In our study, we adopted the
Yamaguchi four-component decomposition [25], [26] due to its
wide applicability and effectiveness in analyzing homogeneous
and heterogeneous regions.
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Fig. 3. Estimation error of the synthetic data. (a) Single-look case consists of
24 sampling points. (b) Multilook case (L = 4) consists of 16 sampling points.
The data are simulated by K-distribution, which covers the real situation of
different heterogeneities.

A parameter used in our method is λ in (23), which decides
the upper bounds of the mixture of homogeneous and heteroge-
neous regions. In our experiments, we set λ to 3 based on our
empirical evaluation. Detailed experiments and discussion are
presented in Section III-F.

B. Error Linearity and Estimation of the Thresholds

Fig. 3 illustrates the estimation error of SCM and FP using
our synthetic data. It is clear that the error of the SCM estimator
increases as the heterogeneous coefficient C increases in both
the single- and multilook cases. The error of the FP estimator,
on the other hand, changed slightly with respect to C. The
difference between εSCM and εFP is shown in Fig. 4.

We adopt the coefficient of determination R2 to evaluate the
“goodness of fit” of the linear model to the estimation error,
which is computed as follows:

R2 =

∑
i(f̂i − f̄)2∑
i(f̂i − fi)2

(30)

where f̄ is the mean of the observed data, and f̂i denotes
the model prediction. The coefficient of determination R2 is
a statistical measure of how well the model approximates the
real data. An R2 of 1 indicates that the model perfectly fits
the data. In our experiments, the coefficients of determination
are 0.9925 and 0.9786 for the two cases shown in Fig. 4(a)
and (b), respectively, which indicates that the linear model fits
the estimation error closely for both the single- and multilook
cases.

Table I lists the thresholds for the single- and multilook
SAR imagery. C̃+ is the optimal threshold that represents the
lower bound of the heterogeneity coefficient for the highly
heterogeneous components. It is symmetric to C− with respect

Fig. 4. Estimation error difference figures of synthetic data. (a) Single-look
case consists of 24 sampling points. (b) Multilook case (L = 4) consists of
16 sampling points.

TABLE I
THRESHOLDS OF POLARIMETRIC SAR IMAGERY. C̃+ IS A REFERENCE

THRESHOLD CALCULATED FROM THE SYNTHETIC DATA; CT IS THE

THRESHOLD COMPUTED WITH THE METHOD IN [21]. ΔCT AND
ΔC+ ARE THE DIFFERENCES OF CT AND C+ TO C̃+

to C∗. That is, C̃+ = 2C∗ − C−. CT is the threshold com-
puted with the method in [21]. C+ is our proposed estimation
calculated with (23), where λ is 3. The last two columns are
the absolute differences of CT and C+ to the reference C̃+.
Compared with CT , C+ gives smaller differences for both the
single- and multilook cases, which indicates that C+ provides a
better estimation of the threshold for the highly heterogeneous
components.

C. Analysis of Window Size for Computing Local
Heterogeneity Coefficient

The window size determines the granularity of the calcula-
tion of the heterogeneity coefficient, which is a key to charac-
terize the local heterogeneity of SAR imagery. Using synthetic
imagery [see example in Fig. 2(a)], we studied the effects of
window size. As previously stated, our synthetic images were
created following the Wishart and K-distributions.

Fig. 5 illustrates the results of using different window sizes.
With a 3 × 3 window, the speckles were barely suppressed,
whereas with a 9 × 9 window, the speckles were mostly even
out. However, a 9 × 9 window also created artifacts along
the boundaries of the heterogeneous regions. In contrast, both
window sizes 5 × 5 and 7 × 7 exhibited superior results with
respect to both speckle reduction and boundary preservation.

The quality of the processed polarimetric SAR image can
be indirectly evaluated with an image segmentation method
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Fig. 5. Estimate results of different window sizes with the proposed estimator.
(a) 3 × 3. (b) 5 × 5. (c) 7 × 7. (d) 9 × 9.

with a reference image (the synthetic image in our case). Seg-
mentation of a noisy image usually results in erroneous delin-
eation, whereas an overly smoothed image loses details of the
boundaries between ground objects. Both the aforementioned
situations may lead to inaccurate boundaries of segmentation
results. To quantitatively evaluate the effect of window size,
we used the degree of overlap ρ as the metric. Let I denote
the reference segmented SAR image that consists of regions
representing ground objects, each of which is of a distinct
degree of heterogeneity to the neighboring regions. Il denotes
a subregion in I that corresponds to object l. Let J denote
the segmentation result from the processed SAR image and
Jl denote a subregion in J for object l. Hence, the difference
between I and J quantifies the agreement of object structure.
The degree of overlap is computed as follows:

ρ =
1

N

N∑
l=1

Il ∩ Jl
(Il + Jl − Il ∩ Jl)

(31)

and ρ ∈ [0, 1], where ρ = 1 indicates the highest agreement and
hence the best performance.

Without loss of generality, our experiments employed the
polarimetric SAR segmentation method proposed in [31]. Note
that the narrow regions in the middle of the synthetic images
were of 8 pixels in width, which simulated ground objects such
as roads and rivers. The limited width restrained the window
size in our experiment. For the ones that greatly exceed the
scale, the computation of heterogeneity is greatly influenced
by pixels in the neighboring region with different degrees of
heterogeneity. Hence, our window size ranges from 3 to 9.

Table II lists our experimental results. Five repetitions were
conducted for each size, and both average and standard devi-
ation (STD) are reported. In four of the five repetitions, the
window size of 5 × 5 yielded the highest agreement. The
average ρ of 5 × 5 was the highest among all. As the window
size increased, ρ decreased considerably. The STDs in all cases

TABLE II
AVERAGE DEGREE OF OVERLAP USING DIFFERENT WINDOW SIZES. THE
RESULTS ARE THE AVERAGE OF FIVE SETS OF SYNTHETIC SAR DATA

Fig. 6. Estimation error with respect to different heterogeneity coefficients.
(a) Single-look case. (b) Multilook case (L = 4). The data were simulated with
K-distribution, which covers the real situation of different heterogeneities. The
experiment is chosen from five similar experiment results.

Fig. 7. Synthetic polarimetric SAR image and the schematic of region types.
(a) Synthetic SAR image. (b) Diagram of region types.

were fairly small. The window size 7 × 7 resulted in the second
highest agreement on average with the smallest STD. However,
compared with the window size 5 × 5, the degree of overlap
using the window size 7 × 7 was inferior. One thing worth
mentioning is that a small window size may not be sufficient
for homogeneous regions, whereas for heterogeneous regions,
a large window size may be surplus. Hence, an overall window
that achieves a balance to a variety of heterogeneities is pre-
ferred. Based on the former consideration and our experiment
results, it is clear that a window size of 5 × 5 was an appropriate
choice, which was used in the rest of our experiments.
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TABLE III
AVERAGE DECOMPOSITION ERROR OF THE SYNTHETIC SAR IMAGERY

D. Performance Assessment

1) Quantitative Analysis Using Synthetic Data: Fig. 6 de-
picts the average estimation error of the SCM, FP, and ACoME
methods with respect to different heterogeneity coefficients
using both the single- and multilook polarimetric SAR im-
ages [see Fig. 6(a) and (b), respectively]. In this experiment,
synthetic images of different degrees of heterogeneity were
created, and five repetitions for eachC were conducted to report
the average error. As shown in Fig. 6(a), ACoME exhibited a
very similar performance to that of SCM in the lower end of
the heterogeneity coefficient, i.e., C < 2. In the upper end of
the heterogeneity coefficient, i.e., C > 3, the error or ACoME
is close to that of FP. In the middle range of the heterogeneity
coefficient, ACoME achieved the smallest error compared with
SCM and FP. Similar trends were observed in the multilook
polarimetric SAR case in Fig. 6(b). It is evident that our
proposed method achieved the best performance with different
degrees of heterogeneity.

To closely simulate the realistic SAR data, we created syn-
thetic images with a mixture of different degrees of hetero-
geneity. Fig. 7 illustrates a synthetic single-look polarimetric
SAR image that consists of 14 regions of four heterogeneity
categories. Category 1 is a homogeneous case created following
Wishart distribution. Categories 2, 3, and 4 are heterogeneous
cases following K-distribution with various degrees of hetero-
geneity from low to high, respectively. The reference matrices
T ∗ used for simulation are sampled from real polarimetric SAR
data. For instance, urban region was used for high heterogene-
ity. The images were decomposed into four basic scattering
types (odd scatterers, double scatterers, volume scatterers, and
helix scatterers) using the Yamaguchi decomposition method,
and the corresponding coherency matrix was computed to
obtain the reference power of each scattering type P ∗.

The error of each scattering mechanism in each type of
regions is

εi =
1

Nk

∑
(x,y)∈k

|Ri(x, y)−R∗
i |

R∗
i

(32)

where (x, y) denotes a pixel location regions of the same cat-
egory k, k ∈ {1, 2, 3, 4}, and i ∈ {odd, double, volume, helix}.
Ri(x, y) = Pi(x, y)/P (x, y) is the normalized power for the
scattering type i, and R∗

i = P ∗
i /P

∗ is the corresponding nor-
malized reference power that remains the same for the same
scattering mechanism. Nk is the total number of pixels in all re-
gions of category k. Hence, the total error of regions of the same
heterogeneity category k is a weighted summation as follows:

Ek =
∑
i

R∗
i εi. (33)

TABLE IV
TOTAL ERROR OF REGIONS OF THE SAME HETEROGENEITY CATEGORY

OF THE SYNTHETIC SAR IMAGERY AND THE AVERAGE ERROR Ē

Fig. 8. Images of the research area. Blue depicts the homogeneous regions,
green depicts the moderately heterogeneous regions, and red depicts the highly
heterogeneous regions. (a) UAVSAR. (b) Optical. (c) Heterogeneity.

The average error across all four scattering types and hetero-
geneity categories is

Ē =
1

4

∑
k

Ek. (34)

Table III lists the decomposition errors of the four different
scattering types (odd, double, volume, and helix) in the four
heterogeneity categories. R∗ gives the reference normalized
power, which is also used in computing the total error of regions
with the same heterogeneity category in (33). The minimum
errors are highlighted in bold. Our proposed ACoME achieved
the best performance by having the lowest error in most cases.
Among all 16 cases, ACoME resulted in the lowest error in
13 cases. The other three cases are within 0.1% margin. The last
column in Table IV gives the overall average error following
(34). The improvement was significant. The overall average
error reduction with respect to Lee sigma filtering was 17.66%,
and the error reductions with respect to the SCM and FP
methods were 4.60% and 6.75%, respectively.

Table IV lists the total error of regions of the same hetero-
geneity category Ei and the average error Ē . By taking into
consideration the weightsR∗ in Table III, ACoME exhibited the
lowest error in all heterogeneity categories and in terms of the
average error. It is also interesting to note that SCM achieved
a lower error than FP in E1, E2, and E3, whereas FP resulted in
better performance in the heterogeneous case E4.

2) Assessment Using Multilook Polarimetric SAR Imagery:
Fig. 8 illustrates an example of the multilook polarimetric
SAR image in PauliRGB [see Fig. 8(a)] and the corresponding
optical image [see Fig. 8(b)]. The field of view of this image
consists of forests, urban areas, a river, and a mixture of
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Fig. 9. Heterogeneity coefficient distribution. (Top panel) Distribution of the
entire UAVSAR image. (Bottom panel) Distributions of different land objects
(river, farmland, forest, and buildings). The vertical lines in each plot mark the
thresholds used in our experiments, i.e., C− (blue) and C+ (red).

Fig. 10. Results of the postestimated images (red: double component; green:
volume component; blue: odd component). (a) SCM. (b) FP. (c) Sigma.
(d) ACoME.

farmland and bare soil. The heterogeneity coefficient map of
the polarimetric SAR image is shown in Fig. 8(c).

Fig. 9 depicts the distribution of the heterogeneity coefficient
C. The top panel shows the distribution of C of the entire
image. The vertical lines mark the two thresholds. Given the
size of the areas of river and farmland (soil), the majority of the
image is close to homogeneous and moderately heterogeneous
regions. The two thresholds are fairly close, which are C− =
0.55 and C+ = 0.95. The bottom panel depicts the distribution
of heterogeneity coefficient of different ground objects. The
heterogeneity coefficients of urban area (in red) and forest (in
dark green) dominate the higher end of the distribution, whereas
the river (in blue) dominates the lower end of the distribution.
The farmland (in light green) and part of the river give different
degrees of heterogeneity. The heterogeneity coefficient clearly
presents an effective means of characterizing the scattering
property of the mixture of land objects.

Fig. 10 illustrates the results of an example SAR image
using SCM, FP, Lee sigma filtering, and our proposed ACoME

Fig. 11. Zoom-in views of the results using the SCM, FP, Lee sigma filtering,
and ACoME methods. The panels depict (a)–(d) water body, (e)–(h) road, and
(i)–(l) river bank. (a) SCM. (b) FP. (c) Sigma. (d) ACoME. (e) SCM. (f) FP.
(g) Sigma. (h) ACoME. (i) SCM. (j) FP. (k) Sigma. (l) ACoME.

method. Limited by the number of channels of a color image,
only three ground scattering object types were colored with red
(double scatterer), green (volume scatterer), and blue (odd scat-
terer). The window size used in computing the heterogeneity
coefficient was 5 × 5, and the window size of the Lee sigma
filtering was 7 × 7. Yamaguchi decomposition was employed
to split the image into four types of scattering objects. Due to
the scale of the panels, the effects of the different methods are
almost invisible, with a few large smoothing effects viewable in
the center left (bright green) and lower left corner (light red).

To have a clear understanding of the effects of the afore-
mentioned methods, Fig. 11 illustrates the zoom-in views of
three regions with characteristic targets: water body with a
boat [see Fig. 11(a)–(d)], road [see Fig. 11(e)–(h)], and river
bank [see Fig. 11(i)–(l)]. SCM generated smooth regions in all
three cases, which characterized the homogeneous regions well.
However, it diffused objects with high scattering contrast. The
boat in water [see Fig. 11(a)] and the roads [see Fig. 11(e)]
are mostly suppressed. In contrast, FP preserved the fine details
of the objects together with the speckle noise, as shown in
Fig. 11(b), (f), and (j). The Lee sigma filtering was able to
handle homogeneous and heterogeneous objects with success.
However, the Lee sigma filtering was unable to fully adapt to
the target scattering properties, particularly in the heteroge-
neous areas. Results of the Lee sigma filtering [see Fig. 11(c),
(g), and (k)] depict inconformity in some fine features such as
road and river bank. In all these cases, the ACoME method was
able to adapt to the spatial dynamics of the ground objects [see
Fig. 11(d), (h), and (l)] and produced accurate characterization
of the homogeneous and heterogeneous targets. It is evident that
the ACoME method exhibited the best performance among all
and it retained both the geometric and polarimetric information.

Table V lists the quantitative evaluation of the aforemen-
tioned methods based on the average power and the power
standard deviation. Fig. 12 illustrates the study site, which was
divided into two regions: region A represents the boat, and
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TABLE V
STATISTICS OF POWER OF COMBINATION OF REGION A AND REGION B

Fig. 12. Study site. The red box highlights the boat (part A), and the green box
highlights the surrounding water in close vicinity (part B).

Fig. 13. Power decomposition of the scattering components in region A. (Left
to right) Results of SCM, Sigma, and ACoME (equivalent to FP).

region B represents the water in the close vicinity. Due to
the smoothing effect, the average power of SCM within these
two regions was the lowest compared with that of the other
three methods. Although the ACoME method integrated esti-
mations from homogeneous and heterogeneous components, it
retained most features, and hence, the overall power remained
fairly high. Most importantly, the standard deviation reveals
that ACoME exhibited the most discriminant power between
the boat and the background water body, which is vital in
applications such as target detection.

For region A, we decomposed it into the four basic scattering
components (odd, double, volume, and helix). Fig. 13 illustrates
the power contribution from different scattering components.
Given that the boat is a man-made object with many reflective
surfaces, we expect that the contributions from double and
helix scatterers are substantial. Note that, for region A, FP and
ACoME exhibited highly similar results due to high degree of
heterogeneity. The contributions to the total scattering power
from double and helix scatterers are 25% and 39% by the
SCM method and the Lee sigma filtering, respectively, whereas
the contribution from double and helix scatterers estimated
based on our ACoME method is 43%, which indicates that the
ACoME method is able to characterize the dominant scattering
properties and hence serve further applications, such as ship
detection, with greater accuracy.

3) Assessment Using Single-Look Polarimetric SAR Im-
agery: Fig. 14 illustrates an example of the spaceborne single-
look C-band RADARSAT-2 imagery of Flevoland, Holland,
and the corresponding optical image. It is visible from the
optical image that the ground objects include lake, farmland,
forest, and urban area, which provides a collection of scattering
mechanisms.

Fig. 14. Example image of RADARSAT-2 data of Flevoland, Holland.
(a) RADARSAT-2 SAR image in PauliRGB. (b) Optical image. Sample regions
are marked with numbers in (a).

Fig. 15. Heterogeneity coefficient distribution. (Top panel) Distribution of the
entire RADARSAT-2 image. (Bottom panel) Distributions of different land
objects (calm lake, farmland, forest, and buildings). The vertical lines in each
plot mark the thresholds, i.e., C− (blue) and C+ (red).

The distribution of the heterogeneity coefficient is shown
in Fig. 15. The top panel shows the distribution of C of the
entire image. The bottom panel depicts the distribution of
the heterogeneity coefficient of different ground objects. The
distributions of forest (in dark green), farmland (in light green),
and calm lake (in blue) are very similar and dominate the
lower end of the distribution. Given that L = 1, following (23),
the heterogeneity thresholds were C− = 1.73 and C+ = 3.00,
which are marked with vertical lines in both panels. Different
from the UAVSAR, the forest in RADARSAT-2 appears more
homogeneous. The building area (in red) dominates the higher
end of the distribution. The heterogeneity coefficient facilitates
the characterization of the scattering properties of the mixture
of land objects in single-look polarimetric SAR imagery.

By selecting eight regions from the example RADARSAT-2
image [see Fig. 14(a)], Fig. 16 illustrates the normalized power
of four basic scattering components in different ground objects.
The labels on the x-axis correspond to the regions depicted
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Fig. 16. Normalized power of the decomposition of four different land objects. Each group consists of three bars that represent the results from SCM, FP, and
ACoME. The labels on the x-axis correspond to the regions depicted in Fig. 14(a). (a) Odd scatterer. (b) Volume scatterer. (c) Double scatterer. (d) Helix scatterer.

in Fig. 14(a). Each group (depicted in the same color) of bars
consists of results of SCM, FP, and ACoME. Regions 1 and 2
are farmlands; regions 3 and 4 are forests; regions 5 and 6 are
water body; regions 7 and 8 are buildings. It is clear that the
majority of the scattering power for the farmlands and water
body was from odd scatterers, whereas the majority of the
scattering power for forests was from volume scatterers. The
urban area had the most complex scattering power mixture, and
double scatterers dominated.

For farmlands and forests, ACoME exhibited similar perfor-
mance to SCM. This is partly due to the homogeneous scat-
tering property of these two types of land objects. In contrast,
FP was inferior in characterizing these objects, as shown in
the volume scatterer panel [see Fig. 16(b)]. The shortage from
volume scattering power appeared in the contributions from
helix and odd components. As to the urban areas, buildings
and man-made structures present many double and some helix
scatterers. The high degree of heterogeneity made ACoME
and FP better means of characterizing land objects, which is
demonstrated in Fig. 16(c). Both ACoME and FP exhibited
more power contribution than SCM. In addition, the existence
of trees in urban areas also made a significant amount of power
contribution from the volume scatterers. In water bodies, the
scattering power of odd components from ACoME and FP
exceeded that from SCM, which reflects the actual scattering
property of water body. In summary, our ACoME method
facilitated an adaptive means of characterizing various land
objects with precision.

E. Validation With High-Resolution Polarimetric SAR Imagery

High-resolution polarimetric SAR images usually contain
more details than moderate-resolution ones, which alters the
scattering power of the ground objects. To evaluate the perfor-
mance of the proposed method with high-resolution polarimet-
ric SAR data, we used a single-look L-band ESAR image of
Oberpfaffenhofen, Germany, as shown in Fig. 17. The spatial

Fig. 17. ESAR image of Oberpfaffenhofen in PauliRGB. The top left box
represents samples of housing area in Fig. 19(a)–(d). The bottom right box
represents samples of a double-bounce reflector in Fig. 19(e)–(h). The top right
box represents samples of parking lot with rows of cars in Fig. 19(i)–(l).

resolution is 1.5 m × 0.89 m (range × azimuth). The distri-
bution of the heterogeneity coefficients is shown in Fig. 18,
in which the top panel depicts the coefficient distribution of
the high-resolution ESAR image. The bottom panel in Fig. 18
depicts the distribution of the heterogeneity coefficients of
different ground objects.

To evaluate the estimate results of the aforementioned meth-
ods, the Yamaguchi four-component decomposition with ro-
tation [26] was adopted in the remaining sections. Zoom-in
views of three subregions of the decomposition results are
illustrated in Fig. 19. It is clear that SCM resulted in the greatest
smoothness yet lost much structural details. For example, the
housing areas [see Fig. 19(a)] are diffused, and the point target
[see Fig. 19(e)] is blurred. In contrast, FP retained most of the
fine details, including noise, as shown in Fig. 19(b), (f), and (j).
The Lee sigma filtering and our ACoME methods were able to
handle both homogeneous and heterogeneous objects with suc-
cess. However, the Lee sigma filtering exhibited inconsistency
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Fig. 18. Heterogeneity coefficient distribution. (Top panel) Distribution of the
entire ESAR image. (Bottom panel) Distributions of different land objects. The
vertical lines in each plot mark the thresholds, i.e., C− (blue) and C+ (red).

Fig. 19. Zoom-in views of the results of the Yamaguchi decomposition with
rotation (red: double component; green: volume component; blue: odd compo-
nent) using the SCM, FP, Lee sigma filtering, and ACoME methods. The panels
depict (a)–(d) housing area, (e)–(h) double-bounce reflector, and (i)–(l) parking
lot with rows of cars.

in the results. For example, in Fig. 19(g), the point target is a
double-bounce reflector according to Lee and Pottier [8]. The
blue pixels in the point target indicate odd component, which
is obviously overestimated. In general, ACoME achieved the
best performance in preserving both the spatial and polarimetric
information.

To quantitatively evaluate the performance of dealing with
homogeneous and heterogeneous ground objects, we adopted
image ratio and ENL in our experiments. Speckle noise in
a polarimetric SAR image follows a multiplication model.
Hence, the ratio of the clean image and the processed image
characterizes structural preservation. The image ratio r is hence
computed as follows [32]:

r =

∣∣∣∣1− ŷ(t)

y(t)

∣∣∣∣ = |y(t)− ŷ(t)|
y(t)

(35)

where y(t) denotes the origin image, and ŷ(t) denotes the
processed image. When the structural details are perfectly
retained, this ratio yields a zero. A ratio that is deviated from

TABLE VI
INDEXES OF EVALUATION OF ESTIMATIONS. EACH METRIC

CONTAINS THREE CASES, AND THE AVERAGE IS

CALCULATED FOR COMPARISON

Fig. 20. Zoom-in views of the edge map from the processed images using
the SCM, FP, Lee sigma filtering, and ACoME methods. (a) PauliRGB image
with homogeneous features. (f) PauliRGB image with heterogeneous features.
(b)–(e) and (g)–(j) Edge maps of the processed results using the SCM, FP, Lee
sigma filtering, and ACoME methods, respectively.

zero indicates less effectivity in preserving details. This metric
is most applicable to the evaluation of the edge preservation
of heterogeneous regions. ENL, on the other hand, is an indi-
cator [33] of noise suppression in homogeneous areas, and its
computation is given in (24).

Table VI lists our quantitative results. The best and second
best results are highlighted in bold and underline, respectively.
The image ratio was calculated for cases with heterogeneous
areas. In terms of detail preservation, ACoME yielded the best
image ratio (0.04) among the four methods. Lee sigma filtering
also performed well with a ratio of 0.0886, whereas SCM had
the least structural preservation. It is evident that ACoME is
superior in handling heterogeneous regions. Table VI also gives
the ENL results for cases with homogeneous areas. A greater
ENL value indicates better noise suppression in homogeneous
regions. SCM attained the greatest ENL, and ACoME attained
the second best, with a difference of 1.98% to SCM, which
suggests that ACoME is very competitive in handling homo-
geneous regions.

To compare the performance of retaining details at the
boundaries, we adopt a Canny edge detector [34] and illustrate
the results in Fig. 20. The threshold used in the Canny edge
detector was 0.7 for all cases. The top row gives an input
image with mostly homogeneous features and the edge map of
the processed images; the bottom row gives the input image
with mostly heterogeneous features and the edge map of the
processed images. In the homogeneous case, ACoME and SCM
retain fine details nearly perfectly [see Fig. 20(a)–(e)], although
the averaging effect of SCM widens the target. The FP and
Sigma methods were also able to retain boundaries; however,
there exists much distortion. In processing the heterogeneous
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Fig. 21. Zoom-in views of the estimate results (PauliRGB) using the ACoME
method with different λ. Depicted in (a)–(c) are parking lot with rows of cars.
(a) λ = 1. (b) λ = 3. (c) λ = 5.

TABLE VII
QUANTITATIVE EVALUATION OF RESULTS USING DIFFERENT λ VALUES

case, FP and ACoME both achieved much better performance
in retaining details while suppressing noise. There exist dis-
connections in the edge map from the result of our AcoME,
whereas unwanted distortions exist in the edge map from the
result of the FP method.

F. Analysis of λ for ACoME Estimation

In our ACoME method, C− and C+ decide the range of
the mixture of homogeneous and heterogeneous components.
While C− is determined by the dimension and number of looks,
C+ is regulated by the free parameter λ, as shown in (23). In
this experiment, we evaluate the results of ACoME qualitatively
and quantitatively with respect to various λ. When λ is set
to 1, C+ matches C−, and hence, ACoME degenerates to a
dichotomize method that treats the ground regions as either
homogeneous or heterogeneous. As we increase λ, we make
the criterion more stringent for deciding strict heterogeneous
regions.

Fig. 21 depicts the results of the ACoME method using
different λ. The panels show zoom-in views of rows of cars
(in light color) and parking lot (in dark color). As we increased
λ from 1 to 5, the suppression of speckles improved. This is
clearly demonstrated in the parking lot region of the zoom-
in view. The distortions across the region were much reduced
when λ was set to 5. However, the fine structures of the rows of
cars were also heavily diffused with λ at 5, and as λ increases,
the oversmoothing effect intensifies. In contrast, when λ was set
to 1, rows of cars and other ground features were well retained.
As shown in Fig. 21(b), λ at 3 yielded the most plausible
balance of retaining fine structures and speckle removal.

Table VII lists the quantitative evaluation results using image
ratio and ENL. The best results with respect to each metric
are highlighted in bold. Among the three λ values, λ = 3
yielded the smallest image ratio, which implies the greatest
similarity to the original image. Both λ = 1 and λ = 5 resulted
in a much higher image ratio. The oversmoothing effect makes
λ = 5 the least favorable choice. According to ENL, λ at
3 and 5 gave much higher results. Both of these two choices are
equally good, and λ = 5 was at a slightly greater advantage.
The difference between the results using λ = 3 and λ = 5 is
merely 0.86%. This indicates that, when λ is above 3, ACoME
is about equally effective in suppressing speckle noise.

IV. CONCLUSION

High-resolution polarimetric SAR images usually contain
a mixture of homogeneous and heterogeneous regions. The
complexity makes estimation of the underlying coherency ma-
trix a very challenging task. In this paper, we have proposed
heterogeneity coefficient based on local coefficient of variation,
which describes the degree of heterogeneity of a local area. Our
ACoME method employs local heterogeneity coefficient and
leverages the advantages of SCM estimation to the homoge-
neous components and of fixed-point estimation to the hetero-
geneous components. The optimal coherency matrix estimation
is a weighted summation of the estimations to the mixture of
scattering components.

Our proposed heterogeneity coefficient provides a means
of characterizing the scattering property of ground objects,
which enables adaptive estimation of coherency matrix in
high-resolution polarimetric SAR imagery. The heterogene-
ity thresholds were able to adapt to the scattering property
and ENL.

Using synthetic SAR imagery and real-world polarimet-
ric SAR imagery of different sensors, we demonstrated that
ACoME achieved the best performance with respect to sup-
pressing speckles, retaining the spatial structure, and preserv-
ing polarimetric information for both single- and multilook
SAR imagery with different degrees of heterogeneity. We also
demonstrated the effectiveness of ACoME when dealing with
high-resolution polarimetric imagery. The quantitative evalua-
tion affirmed significant improvement. The influence of λ on
ACoME was also evaluated and discussed.
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