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Abstract—In a heterogeneous Wireless Sensor Network (WSN),
factors such as initial energy, data processing capability, etc.
greatly influence the network lifespan. Despite the successof
various clustering strategies of WSN, the numerous possible
sensor clusters make searching for an optimal network struc-
ture an open challenge. In this paper, we propose a Genetic
Algorithm based method that optimizes heterogeneous sensor
node clustering. Compared with five state-of-the-art methods, our
proposed method greatly extends the network life and the average
improvement with respect to the second best performance based
on the first-node-die and the last-node-die is 33.8% and 13%,
respectively. The balanced energy consumption greatly improves
the network life and allowed the sensor energy to deplete evenly.
The computational efficiency of our method is comparable to the
others and the overall average time across all experiments is 0.6
seconds with a standard deviation of 0.06.

Index Terms—Wireless Sensor Networks, Genetic Algorithms,
Clustering Methods, Energy Conservation

I. I NTRODUCTION

To improve network lifetime, clustering model has been
used in Wireless Sensor Networks (WSNs) [1]. In a heteroge-
neous WSN, in addition to the network geospatial factors, e.g.,
distance to the base-station, and distance among nodes [2],
factors such as initial energy, data processing capability,
and ability to serve as cluster head greatly influence the
network lifespan [3], [4]. Methods have been proposed to
extend lifetime of a heterogeneous network. Stable Election
Protocol (SEP) [5] used weighted probabilities to elect cluster
heads based on the remaining energy in sensor nodes. De-
veloped Distributed Energy-Efficient Clustering (DDEEC) [6]
and Threshold Sensitive Stable Election Protocol (TSEP) [4]
extended SEP by categorizing sensor nodes based on energy
level and cluster heads were selected from those with higher
energy. Similarly, Energy Efficient Heterogeneous Clustered
scheme (EEHC) [7] and Efficient Three Level Energy algo-
rithm (ETLE) [8] selected cluster heads based on probability
proportional to the residual energy. In [9], energy-efficient
multilevel heterogeneous routing (EEMHR) protocol was pro-
posed, in which nodes were grouped into a hierarchy and the
ratio of the number of alive nodes to the total number of
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nodes was used for the selection of cluster heads. In Hybrid
Energy Efficient Reactive protocol (HEER) [10], the cluster
head selection was based on the ratio of the residual energy
of nodes and the average energy of the network.

Searching for a balance among many factors is non-trivial,
and many optimization methods have been applied to tackle
the problem [11]. Genetic Algorithm (GA) provides an op-
timization method that, by defining an appropriate fitness
function, identifies optimal or sub-optimal solutions to satisfy
all constraints. GA has been used in the routing protocol of
WSN [12], [13]. When GA is used, a key objective is to
define an appropriate fitness function that encodes the network
structure. However most of GA-based methods were developed
for homogeneous WSNs, e.g., HCR [14], while a few were
dealing with heterogeneous WSNs in which the difference
between sensors in the initial energy is the dominate factor
of heterogeneity. The Evolutionary based clustered Routing
Protocol (ERP) [12] overcame the limitations of clustering-
based GAs by uniting the cohesion and separation error, and
proposed a fitness function based on these two factors.

Although most of the research concentrated on energy as
the only heterogeneity factor, many types of heterogeneities
exist [11], [15], e.g., communication capability and data pro-
cessing power. In this paper, we propose a sensor clustering
method for dynamically organizing heterogeneous WSN using
GA. Our method provides a framework to integrate multiple
heterogeneity and clustering factors, which employs remaining
energy, expected energy expenditure, network locality, and
distance to the base-station in search for an optimal, dynamic
network structure for heterogeneous WSN. Heterogeneity fac-
tors are integrated as constraints to chromosomes, and a
validation process is performed to ensure network integrity.

The contribution of this work is two-fold: First, expected
energy expenditure of each sensor node is proposed to provide
an estimation of the possible energy state in the next round if
a network clustering structure is formed. This is significantly
different from the widely used energy history (e.g., consumed
energy and remaining energy) as a criterion for cluster headse-
lection. Second, a GA-based optimization method is developed
that encodes the network clustering structure with integrity
validation and employs a fitness function of multiple aspects
of the heterogeneous WSN.

In the rest of this paper, Section II formulated the clustering
problem in heterogeneous WSNs and describes our method.
Section III discusses our experimental results including acom-
parison study with five state-of-the-art methods and analysis
of energy consumption. Section IV presents the conclusions.
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II. SELF-CLUSTERING METHOD FORHETEROGENEOUS

NETWORK USINGGENETIC ALGORITHM

A. Network Model and Clustering Factors

We adopt the first order radio model to describe sensor
energy status [16]. The consumed energyE of a sensor node
s is the summation of energy used to acquirel bits of data
(EA

s (l)), receivel′ bits of data (ER
s (l

′)), processl′′ bits of
data(EP

s (l
′′)), and transmitl′′ bits of data over a distanced

(ET
s (l

′′, d)):

Es = EA
s (l) + ER

s (l′) + EP
s (l′′) + ET

s (l
′′, d), (1)

whereER
s = Ei+ l′E∗, andEi is the idle energy expenditure.

ET
s = Ei + l′′dn, andn = 4 for long distance transmission

andn = 2 for short distance transmission, andE∗ denotes the
cost of beam forming approach for energy reduction.

To compute the expected consumed energyÊ of a non-CH
sensor nodes′ and a CH sensor nodes, we assumel bits
of data are collected by each sensor node in a round. Let the
number of sensors in a cluster headed bys beNs; the expected
consumed energŷE for s ands′ are computed as follows:

Ês′ = E + lD2(s′, s), (2)

Ês = E +NslE
∗ + (Ns + 1)lD4(s,B), (3)

whereE is the constant energy consumption including the
energy of data acquisition, processing and idle. Functions
D(s′, s) andD(s,B) use Euclidean distance to approximate
the distances between sensor nodes inside the cluster and from
the cluster head to the base-stationB, respectively.

The local sensor density is proportional to the number of
sensors within theδ-vicinity as follows:

Gs(δ) ∝ ‖Ss‖, andSs = {si;D(s, si) ≤ δ} (4)

whereSs is the set of sensor nodes in theδ-vicinity of s and
function ‖ · ‖ gives the set size.

B. Network Structuring using Genetic Algorithm

In our GA-based method, a binary chromosome is used to
describe the network structure, in which ‘1’ represents a CH
and ‘0’ represents a member node to a cluster. When a sensor
becomes inactive, i.e., out of power, its corresponding gene
value is set to ‘-1’, which exempts this sensor from further
GA operations.

In each network transmission round, sensor node status
data is transmitted to the base-station together with the data
collected from the field. Such data is used by the GA to search
for the optimal clusters and the computation is carried out by
the base-station. After the cluster heads and member nodes
are decided, the base-station broadcasts the assignments to the
sensor nodes to prepare the next round of data acquisition.

The mapping a chromosome to sensor clusters is by mini-
mizing the network communication distanceD as follows:

D =

C∑

i=1

Nsi∑

j=1

D(si, sj) (5)

whereC is the number of clusters in a network andNsi is the
number of member nodes in a cluster headed by nodesi. In

practice, minimizingD is equivalent to assigning sensor nodes
to clusters following the nearest neighbor rule.

The fitness function integrates energy factors (i.e., Eq. (1)),
spatial distances, and the local sensor density as follows:

f =
∑

s

Es(t)

Es(0)
+

Ẽ

Ê
+

1

D̂
+

1

N

∑

s′

Gs′(δ), (6)

whereEs(t) is the remaining energy of sensor nodes at round
t andEs(0) is the initial energy of sensor nodes. Ẽ is the
total energy cost if the messages are transmitted directly from
all sensor nodes to the base-station.D̂ is the total distance
between the CHs and the base-stationB:

D̂ =
C∑

i=1

D(si, B) (7)

where eachsi is a sensor node that serves as a CH. Including
sensor density favors the choice of CHs with more close
neighbors.

C. Chromosome Validation and Evaluation

In a heterogeneous WSN, functions and capabilities of
sensors vary. Some sensors are unable to serve as cluster head;
whereas some are preferred to take the role due to their supe-
rior processing power and available energy. However, classical
optimization method such as GA provides no integrated mech-
anism for ensuring alignment of different roles of the sensors.
In addition, the random initialization and GA operations could
introduce chromosomes that completely violate the current
sensor properties. In our method, heterogeneity is presented
as constraints and hence a validation process is needed before
evaluating chromosomes’ fitness to ensure network integrity.

Fig. 1 shows the validation process. In GA optimization,
a new chromosome represents the proposed structure for the
WSN. Each gene defines the expected role of the correspond-
ing sensor node, i.e., whether it serves as a cluster head or
a member node. The process consults the ‘ability to serve
as a CH’, and the ‘Sufficient Energy’ tables. The ‘ability to
serve as a CH’ table is used to determine whether the node can
serve as a cluster head (‘1’ represents serving as a cluster head
and ‘0’ a member node). While, the ‘Sufficient Energy’ table
is used to present the availability of nodes, i.e., ‘1’ denotes
available nodes and ‘0’ denotes disabled nodes. The validation
process determines if a chromosome is complied with the
constraints and updated the bit accordingly. An example is
shown in Fig. 1.

In GA optimization, crossover operation is performed with
two randomly selected chromosomes decided by the crossover
probability. When crossover is determined not to be conducted,
the parent chromosomes are duplicated to the offspring without
change. In practice, this probability is close to 1.

The mutation operation involves altering the value at a
randomly selected gene within the chromosome. Similarly,
a mutation probability is used. Different from the crossover
probability, the mutation probability is usually fairly small.
Essentially mutation operation could create completely new
species, i.e., an arbitrary locus in the fitness landscape. Hence,
it is a means to get out of a local optimum. Recall that when
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Fig. 1. The chromosome validation process is to ensure network integrity.
Red bits mark the constraints and the changed bits.

a sensor node becomes inactive, its corresponding gene is set
to -1 to exempt it from mutation operations.

After validation, Eq. (6) is used to evaluate the fitness of
each chromosomes. An intermediate pool of chromosomes is
created to hold the individuals created in a generation, and
depending on the needs user can specify any intermediate
population size that is greater than the initial populationsize.

The evolution terminates when one of the following criteria
is satisfied: 1) the maximum number of generations is reached,
or 2) the fitness converges. Upon completion of the GA
evolution, the chromosome that gives the best fitness value
is used to restructure the WSN.

III. R ESULTS AND DISCUSSION

The simulated WSN is in an area of 100 meters by 100
meters (m) with 50 sensors randomly placed in the field and
the data packet size is 400 bits. The network parameters are
listed in Table I. The heterogeneity includes different initial
power, data processing efficiency, and capability of serving
as cluster head. For the sensors with greater data processing
efficiency, the energy used is 50% of that used by a regular
sensor. 10% of sensor nodes possessed greater initial energy
and data processing efficiency, and 10% of sensor nodes are
unable to serve as cluster head. The heterogeneous sensors are
chosen randomly in each experiment.

TABLE I
NETWORK PARAMETERS.

Parameters Values

Initial energy 0.5J or 1.0J
Idle state energy 50nJ/bit
Data aggregation energy 5nJ/bit
Amplification energy d ≥ d0 10pJ/bit/m2

(cluster head to base-station) d < d0 0.0013pJ/bit/m2

Amplification energy d ≥ d1 Efs/10 = Efs1

(sensor to cluster head) d < d1 Emp/10 = Emp1

The population size of our GA is 30 and the number of
generations is 30. The crossover probability and mutation
probability are 0.8 and 0.006, respectively. Theδ-vicinity is
20 meters.

Table II compares the network life of our method with five
state-of-the-art methods, which include HEER [10], TSEP [4],
DDEEC [6], ETLE [8], and ERP [12]. The average number
of rounds when first node dies (FND) and last node dies
(LND) are reported; and 10 experiments are conducted for

each analysis. Our method, denoted by GAHN, exhibits the
longest average network life. The average improvement with
respect to the second best performance based on FND and
LND are 33.8% and 13%, respectively. Fig. 2 depicts the
number of live nodes throughout the network life, which
presents a progressive view. The dash line with solid dot shows
the result of GAHN. The balanced energy consumption greatly
improves the network life and allows the sensor energy to
deplete evenly.

TABLE II
NETWORK TRANSMISSION ROUNDS WHEN FIRST AND LAST NODE DIES.

Methods ETLE ERP HEER DDEEC TSEP GAHN

FND 1514 2010 1789 1100 1986 2690
LND 6904 9200 6150 8900 7640 10400

Fig. 2. Percentage of live nodes throughout network lifetime.

Fig. 3 illustrates an example of the remaining energy of
sensors at four transmission rounds. At round 0, i.e., the
initialization, 5 nodes (highlighted with green bars) are fueled
with greater energy at1J . The red bars mark sensors unable
to serve as cluster head. As transmission continued, the
remaining energy of sensors gradually reduces mostly evenly.

Fig. 3. The remaining energy of sensor nodes at certain transmission rounds.

Table III lists the average remaining energy of the low-
initial-energy sensors and its standard deviation at various
transmission rounds. Small STDs indicate balanced energy
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consumption among sensors. Due to unequal distances to the
cluster head, the energy expenditure for the member nodes
varied. It is inevitable that STDs continued to increase.

TABLE III
REMAINING ENERGY (J) AND ENERGY STANDARD DEVIATION (STD).

Rounds 500 1000 1500 2000 2500 3000

Mean 0.431 0.363 0.295 0.226 0.158 0.090
STD 0.010 0.020 0.031 0.042 0.052 0.062

Fig. 4. Spatial and frequency view of sensor nodes serving ascluster head.

Fig. 4 illustrates the spatial and frequency view of sensor
nodes serving as cluster head throughout the life of the
network. The size of sphere is proportional to the number of
times a sensor served as cluster head. It is clear that the ones
with higher initial energy serve as cluster head most times.The
placement of higher energy sensors is randomized but spatially
uneven. Despite that the high-initial-energy sensors dominated
the role of cluster head, their spatial disadvantage, i.e.,closely
located with each other, made some low-initial-energy sensors
to act as cluster head to serve nearby sensors. The average
number of clusters in all rounds of our 10 experiments is 6,
among which 97% of times high-initial-energy nodes served
as cluster head. The forming of clusters is greatly influenced
by the spatial location of sensor nodes. The low-initial-energy
nodes that serve as cluster head are usually far away from the
high-initial-energy ones, which justifies their role as CH.

TABLE IV
AVERAGE TIME (IN SECONDS) FOR NETWORK STRUCTURING.

Methods ETLE ERP HEER DDEEC TSEP GAHN

50 0.42 0.60 0.43 0.39 0.45 0.54
sensors (0.03) (0.12) (0.02) (0.04) (0.06) (0.06)
100 0.53 0.71 0.51 0.55 0.61 0.63
sensors (0.10) (0.34) (0.21) (0.11) (0.17) (0.27)

Efficiency is an important factor in real-world applications.
Our experiments are conducted in a computer with Intel core i5
2.6GHz CPU, 4GB memory, and Windows 7 operating system.
The algorithms are implemented in C#. Table IV lists the
average time used to structure clusters in each transmission
round. The time reported is before the first node exhausts its
energy. The number in parenthesis is the standard deviation. In
addition to 50 sensors in the field, we also experiment with 100

randomly placed sensors with the other parameters remaining
the same. The average time used by GAHN is comparable to
the other methods. Note that the most time-consuming process
in GAHN is evaluating fitness, which can be implemented with
parallel programming to improve efficiency.

IV. CONCLUSION

In this paper, we propose a self-clustering method for het-
erogeneous network using Genetic Algorithm that optimizes
the network life. Compared with five state-of-the-art methods,
our proposed method greatly extends the network life and the
average improvement respect to the second best performance
based on the first-node- and the last-node-die are 33.8% and
13%, respectively. The average number of clusters in all
rounds of our experiments is 6, among which 97% of times
high-initial-energy nodes serve as cluster head. The overall
average time across all experiments is 0.6 seconds with a
standard deviation of 0.06.
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