
JID:YDSPR AID:1630 /FLA [m5G; v 1.134; Prn:1/07/2014; 16:02] P.1 (1-11)

Digital Signal Processing ••• (••••) •••–•••
Contents lists available at ScienceDirect

Digital Signal Processing

www.elsevier.com/locate/dsp

Adaptive wavelet shrinkage for noise robust speaker recognition

Sumithra Manimegalai Govindan a, Prakash Duraisamy b, Xiaohui Yuan b,∗
a Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu 638401, India
b Department of Computer Science and Engineering, University of North Texas, 3940 N. Elm, Denton, TX 76201, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Available online xxxx

Keywords:
Speaker recognition
Noise suppression
Wavelet
Feature extraction

Speaker recognition faces many practical difficulties, among which signal inconsistency due to environ-
mental and acquisition channel factors is most challenging. The noise imposed to the voice signal varies 
greatly and a priori noise model is usually unavailable. In this article, we propose a robust speaker 
recognition method that employs a novel adaptive wavelet shrinkage method for noise suppression. In 
our method, wavelet subband coefficient thresholds are automatically computed, which are proportional 
to the noise contamination. In the application of wavelet shrinkage for noise removal, a dual-threshold 
strategy is developed to suppress noise, preserve signal coefficients and minimize the introduction 
of artifacts. The recognition is achieved using modification of Mel-frequency cepstral coefficient of 
overlapped voice signal segments. The efficacy of our method is evaluated with voice signals from 
two public available speech signal databases and is compared with state-of-the-art methods. It is 
demonstrated that our proposed method exhibits great robustness in various noise conditions. The 
improvement is significant especially when noise dominates the underlying speech.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Speaker recognition extracts features from a piece of voice to 
deduce the speaker’s identity [1]. It is usually treated as two tasks: 
verification and identification [2]. Speaker verification determines 
if a person is the claimed identity based on a piece of voice sam-
ple; whereas speaker identification determines which one of a 
group of known voices best matches the input voice sample. This 
article focuses on speaker identification, but the algorithm can be 
extended to speaker verification. Speaker recognition is an impor-
tant tool for countless applications such as access control and user 
privacy protection. Many such systems have been developed that 
achieve very good results given clean, high-quality voice signals 
with similar training and testing acoustic conditions. However, un-
der noisy environments, which is often expected in a large number 
of real-world applications (e.g., voice-based user verification us-
ing cell phones), system performance degrades dramatically, far 
from a satisfactory level [3,4]. The feature vectors generated from 
corrupted speech are no longer similar to the class distributions 
represented by the training data sets. Because of the channel ef-
fects, there is inherently more variability in the training data, and 
as a result, the variance of speaker classes distributions increases. 
This leads to increased errors over the cases where the training 
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and test speech are both clean. To make it practical and feasible 
for consumer devices, it is highly desired that robust methods are 
developed to withstand noise interference from various sources of 
unknown types.

Existing methods to tackle noise contamination in speaker 
recognition mostly focus on creating acoustic model of the back-
ground [5] and removing noise from input voice signals [6]. The 
challenge remains that well-trained models result in inferior per-
formance when training and testing signals are contaminated with 
different types of noise. Motivated by the success of the noise-
aware image fusion method in [7], we propose a robust speaker 
recognition method that employs an adaptive Bionic wavelet 
shrinkage (ABWS). Without the knowledge of the noise character-
istics or assuming a model of the underlying clean speech signal, 
our method leverages the sparsity of the wavelet coefficients and 
suppresses noise to improve signal quality and hence recogni-
tion accuracy. In our ABWS method, subband coefficient thresholds 
are automatically computed that are proportional to the amount 
of noise contamination. In addition, our dual-threshold strategy 
(DuTS) preserves signal coefficients and introduces little artifact 
with gradual coefficient amplitude suppression. The effectiveness 
of our method is evaluated with samples from two public avail-
able speech databases (TIMIT and KING) and a comparison study 
with state-of-the-art methods is conducted.

The rest of this paper is organized as follows: Section 2 presents 
the architecture of our speaker recognition system and related 
work. Section 3 describes our noise robust speaker recognition 
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Fig. 1. An overview of an automatic speaker recognition system.

method in detail. We discuss the noise driven adaptive subband 
coefficient threshold estimation method followed by our dual-
threshold wavelet shrinkage. Section 4 presents the experimental 
results and discussions. Finally, Section 5 concludes the paper with 
a summary of our method.

2. Background and related work

Given exemplar voice streams, it usually requires some process-
ing steps to construct an automatic speaker recognition system. 
These steps include noise suppression, feature extraction, and a 
learning component to create multi-speaker models (see Fig. 1 for 
a system overview). In real-world applications noise is inevitable 
and its characteristics vary, which makes noise removal a key step 
in automatic speaker recognition.

Among the steps shown in Fig. 1, feature extraction aims at 
extracting acoustic signatures that are critical for differentiating 
speakers. It usually transforms the speech signal into a compact 
representation. The performance of a speaker recognition system 
is highly dependent on the quality of the selected speech features.

Speaker recognition has been extensively investigated and many 
algorithms have been developed to address noisy voice prob-
lem. Hermansky and Morgan [8] developed a band-pass filtering 
method to suppress spectral components that vary more slowly 
or quickly than the change of the speech. Ming et al. [9] com-
bined a multi-condition model and the missing features to com-
pensate signal noise. A similar strategy was developed in [5] where 
a universal background model [10] was used, which is based on 
Gaussian Mixture Model (GMM) using acoustic features to repre-
sent the general, speaker-independent distribution of features. Zao 
and Coelho [11] proposed a multi-condition training technique that 
employs GMM for speaker modeling. Kim and Gales [12] extended 
linear transform for model-based adaptation that uses a modified 
version of generative model between clean and noisy signals. Deng 
et al. [13] proposed a stereo-based piecewise linear compensation 
method and demonstrated its effectiveness with white noise, bab-
ble noise and office noise. Liao et al. [14] used latent prosody 
analysis to extract spectral features for speaker identification. It 
combines prosodic feature-based system with maximum-likelihood 
a priori knowledge. Wang and Gales [6] extended the acoustic fac-
torization method that assigns separate transforms to represent 
the speaker and noise. Nemala et al. [4] used a multistream feature 
processing to address additive noise as well as slow-varying chan-
nel conditions. Padilla et al. [15] proposed a soft spectral subtrac-
tion method that handles missing features in speaker verification, 
which improved verification performance as long as a minimum 
number of features were obtained. Brajevic et al. [16] proposed a 
method that uses short time Fourier transform and Ephraim–Malah 
estimation to deal with signals with stationary noise. The method 
reduced spectral coefficients and hence suppresses noise. Abd El-
Fattah et al. [17] described an adaptive Wiener filter in time do-
main to accommodate varying nature of speech signals with noise. 
Penda and Srikanthan [18] presented a compensation scheme to 
adapt model parameters to reduce the disparity between training 
and testing data sets. Despite the great effort devoted to accom-
modate noisy voice signals, mismatched noise type in training and 
testing (i.e., recognition) is still an open problem.

Alternatively, methods using wavelet transformation have be-
come increasingly popular in many signal processing applica-
tions [7,19] because noise components in wavelet subbands are 
usually characterized by coefficients with small magnitude. Mal-
lat and Hwang [20] have shown that effective noise suppression 
may be achieved by transforming the noisy signal into the wavelet 
domain, and preserving only the coefficients of local maxima. A re-
construction that used only the large-magnitude coefficients was 
shown to approximate the uncorrupted signal well. In other words, 
noise suppression is achieved by suppressing the magnitude of the 
wavelet coefficients of the contaminated signal. In [21], Donoho 
employed the thresholding in the wavelet domain and demon-
strated the denoised result to have near optimal properties for 
a wide class of signals that were corrupted by additive white 
Gaussian noise. Johnstone and Silverman [22] proposed a level-
dependent threshold to remove colored noise. Johnson et al. [19]
extended the Bionic Wavelet Transform (BWT) [23] in combina-
tion with the existing wavelet denoising techniques to construct 
a wavelet thresholding method for speech enhancement. Bahoura 
and Rouat [24] proposed the method of level dependent wavelet 
thresholding, using the Teager energy operator to improve the dis-
crimination for determining whether a voice stream was domi-
nated by speech or noise. Khaled Daqrouq [25] investigated the 
utilization of wavelet filters via multistage convolution by reverse 
biorthogonal wavelets in high-pass and low-pass frequency bands 
of a speech signal. Speech signal was decomposed into two fre-
quency bands and the noise was removed in each band individu-
ally at different stages via wavelet filters. Ghanbari and Karami-
Mollaei [26] developed a node dependent wavelet thresholding 
and modified thresholding functions were introduced to improve 
accuracy. Despite the advancement of wavelet shrinkage based 
noise removal, the aforementioned methods have not been applied 
to speaker recognition. The threshold used in shrinkage needs to 
be automatically decided according to the noise type and noise 
strength.

When applying an automatic speaker recognition system, the 
acquired speaker voice stream is usually processed with the same 
pre-processing steps used in the training phase with a goal of re-
moving the inner speaker disparity. However, the voice acquired 
for recognition often contains different noise characteristics, e.g., 
magnitude and frequency characteristics. Such mismatch could de-
grade the recognition accuracy. The different noise characteristics 
in the training and testing voice signals are not fully addressed in 
the aforementioned methods. In this article, we propose a method 
to adaptively suppress noise component in voice signals to improve 
the robustness with respect to noise and hence facilitate speaker 
recognition in real-world applications.

Since the research in speaker recognition and the related fields 
have yielded a large number of methods, the acronyms and sym-
bols used in this article could be confusing. For the ease of under-
standing our description, Table 1 summarizes the acronyms and 
symbols used in this article, which are ordered alphabetically for 
the ease of search. Further description of variables and functions is 
presented in the text when they are first used.

3. Adaptive discrete Bionic wavelet shrinkage

Inspired by the success of noise-aware image fusion method 
in [7], we propose an ABWS method to account for excessive noise 
in the speech signals. In this section, we first briefly review the 
Bionic wavelet transform and present our extension to include 
capability of adapting to time. We then describe our automatic 
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Table 1
Acronyms and symbols used in this article.

Symbol Description Symbol Description

ABWS Adaptive Bionic Wavelet Shrinkage c j Wavelet coefficients in the jth scale
BFCC Bark Scale Filter bank Cepstrum Coefficients d j Number of samples in scale j
BWT Bionic Wavelet Transform E(·) Expectation
DuTS Dual Threshold Shrinkage f Input voice signal
EMF Ephraim–Malah Filtering f̂ s Noise suppressed signal
IWF Iterative Wiener Filtering p,q Gains factor in function λ

IS Itakuro–Saito distance s Saturation constant in function λ

LBG Linde–Buzo–Gray algorithm Td Dual thresholding function
LPCC Linear Prediction Cepstral Coefficients Th Hard thresholding function
MFCC Mel-Frequency Cepstral Coefficient Ts Soft thresholding function
MMFCC Modification of MFCC T j Threshold for the jth scale
MOS Mean Opinion Score η Cut-off amplitude
MSE Mean Square Error λ Time adaptive function
RPLP Revised Perceptual Linear Prediction σ̂ Estimated noise standard deviation
SS Spectral Subtraction σ̂ j Median coefficient magnitude
SNR Signal Noise Ratio σn Noise standard deviation
a Dilation factor in BWT τ Time shift in BWT
B BWT coefficients ϕ Mother wavelet function
B̃ Time adaptive BWT coefficients ϕ∗ Complex conjugate of ϕ
method for estimating subband noise magnitude to determine a 
scale dependent threshold. Lastly, we introduce our ABWS with 
dual-threshold shrinkage function.

3.1. Discrete Bionic wavelet transform

The Bionic wavelet transform (BWT) [23] is a time adaptive 
wavelet transform based on the Morlet wavelet designed specifi-
cally to model the human vocal signals. This signal transformation 
is based on the Giguere–Woodland non-linear transmission line 
model of the auditory system [27].

The BWT of an input signal f (t), denoted by B(ω), is formu-
lated as follows:

Ba,τ (ω) = 1

λ
√

a

∫
f (t)ϕ∗

(
t − τ

aλ

)
e(− jω( t−τ

a )) dt, (1)

where ϕ∗ is the complex conjugate of the mother function ϕ(t)
and ϕ(t) = 1√

a
ϕ̃(t)e jωt . Factors a and τ are the dilation and time 

shift parameters, respectively. B(a,τ ) is the coefficient of the BWT 
at time τ and scale a.

The time adaptive function λ(τ + δτ ) is derived from the active 
auditory model [28] and is expressed as follows:

λ(τ + δτ ) = 1

(1 − p s
s+|Ba,τ | )

1

(1 + q| ∂

∂t Ba,τ |) , (2)

where s is a saturation constant, and p and q are the gains. By 
changing the values of p and q, we can adjust the resolution in 
frequency and time domains, respectively. Factor λ in Eq. (1) must 
be a constant in the period δτ . This approximation is plausible 
if the signal and its first derivative are continuous and the signal 
amplitude is small enough [23].

Based on the λ function, the coefficients of time adaptive BWT, 
denoted by B̃, are expressed as the weighted coefficient of BWT as 
follows:

B̃(ω) =
√

π

2
√

λ2 + 1
B(ω). (3)

3.2. Noise-driven adaptive threshold selection

In the wavelet domain, noise is characterized by coefficients 
with small amplitude, while the underlying clean signal dominates 
the coefficients with large amplitude [21]. Taking advantage of this 
property, noise can be removed via thresholding the wavelet coef-
ficients, namely wavelet shrinkage.
The main issue in wavelet shrinkage is to determine an ap-
propriate threshold. Donoho and Johnstone [21] proposed the 
SUREshrink method based on the Stein’s Unbiased Risk Estimator. 
The threshold for wavelet shrinkage is chosen as the value that re-
sults in a minimized estimation error, i.e., 

√
2 log(d), where d is 

the dimension of the signal and is independent of the data. This 
threshold is attractively simple and works well for the uncorre-
lated noise.

If the noise is colored and non-stationary, the variance of the 
noise wavelet coefficients will be different for each scale in the 
wavelet decomposition. In this case, scale dependent thresholding 
proposed by Johnstone and Silverman [22] accounts for the differ-
ent variances of the noise wavelet coefficients in each scale. For 
scale dependent thresholding, the noise variance for scale j can be 
estimated using the median coefficient magnitude of the high-pass 
subband as follows [29]:

σ̂ j = Median(|c j|)
0.6745

, (4)

where c j represents the wavelet coefficients in the jth scale high-
pass subband. This method is insensitive to the outliers with large 
magnitude but gives a rough estimation. The set of standard devi-
ation values can now be used as the “noise profile” for selecting 
thresholds.

In our prior work [30] the authors developed a method to over-
come the bias caused by sample size. This method takes advantage 
of the sparseness property of the wavelet subband. The idea is 
to identify the coefficients that were distorted and calculate the 
variance, which closely approximates the noise distribution if the 
following two conditions are satisfied: 1) The noise variance is 
much greater than that of the underlying clean coefficients used 
for variance computation; 2) The number of such coefficients is 
statistically large enough.

The noise component in each subband is modeled with the 
zero-mean super Gaussian function and the coefficients that con-
stitute noise are small in amplitude. Hence, we can construct a 
subband variance function with respect to the cutoff amplitude η
and the optimal η can be identified by finding the inflection point 
of the variance function’s first derivative [7] as follows

η = arg max
η

∂σ 2(η)

∂η
. (5)

Using the estimated cutoff amplitude η, the noise variance is com-
puted using the coefficients that are below the cutoff value:
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σ 2
n (η) = 1

N − 1

∑
| f |≤η

( f − f̄ )2, (6)

where N is the number of coefficients that satisfy the condition 
| f | ≤ η.

With the noise variance function in Eq. (6), the optimal noise 
coefficient range can be determined by minimizing the following 
error function:

η∗ = arg min
λ

E
(

f̂ s(λ) − f s
)2

, (7)

where f̂ s(λ) is the noise suppressed signal and E(·) is the expec-
tation function. The closed form solution is derived as follows:

η∗ = σ 2
n (ν)√

σ 2
f − σ 2

n (ν)
. (8)

The scale dependent threshold depends on the noise coefficient 
magnitude in each subband. The threshold for the jth scale is com-
puted as follows:

T j = σ̂
( j)
n

√
2 log(d j), (9)

where d j is the number of samples in scale j and σ̂ ( j)
n is the esti-

mated noise variance.

3.3. Dual-threshold shrinkage function

In wavelet shrinkage, wavelet coefficients are suppressed ac-
cording to their amplitude. Two widely used shrinkage functions 
are hard thresholding and soft thresholding. In hard thresholding 
method, wavelet coefficients are suppressed to zero if their am-
plitude is below the threshold; otherwise, they retain the original 
value. The hard thresholding function Th is expressed as follows:

Th(T ) =
{
B̃ |B̃| > T
0 otherwise

(10)

The discontinuity at threshold T could introduce artifact after 
signal reconstruction. Hence, soft thresholding is developed. In-
stead of suppressing only the coefficients with small amplitude to 
zero, the amplitude of all coefficients is universally reduced by the 
magnitude of the threshold. The thresholding function Ts is formu-
lated as follows:

Ts(T ) =
{

sgn(B̃)(|B̃| − T ) |B̃| > T
0 otherwise

(11)

where function sgn(B̃) gets the sign of the wavelet coefficient B̃.
Using soft thresholding method, coefficients with large ampli-

tude are “punished” in the same scale as those noise coefficients. 
The large coefficients, however, constitute the fundamental part 
of the signal and suppressing them changes the high frequency 
components in the reconstructed signal, which in turn alters the 
speaker’s acoustic property.

To circumvent the artifacts introduced by coefficient shrinkage 
functions, we propose a dual-threshold shrinkage (DuTS) function. 
The idea is to retain the large coefficients without any change and 
truncate the small ones. For the coefficients fall between the two 
thresholds, the suppression follows a piece-wise linear function 
that imposes stronger suppression to the smaller coefficients in the 
range. The DuTS function Td is as follows:

Td(T1, T2) =
⎧⎨
⎩
B̃ |B̃| > T2
sgn(B̃)W (B̃) T1 < |B̃| ≤ T2
0 |B̃| ≤ T1

(12)

and
W (B̃) = T1T2(|B̃| − T1)

T2 − T1
. (13)

Following the DuTS function, if the amplitude of a coefficient is 
less than the lower threshold T1, its value is suppressed to zero; 
if it is greater than upper threshold T2, its value is retained. If 
its amplitude is between the two thresholds, its value is rescaled 
according to Eq. (13).

In this method, threshold T2 is always greater than T1 and can 
be expressed as

T2 = kT1, (14)

where k > 1. Hence the function in Eq. (13) is rewritten as

W (B̃) = k

k − 1

(|B̃|T1 − T 2
1

)
. (15)

The suppressed coefficients between T1 and T2 must be less 
than or equal to B̃, i.e.,

T1T2
|B̃| − T1

T2 − T1
≤ |B̃|. (16)

Because the shrinkage function is symmetric about the origin, we 
derive the following relations with B̃ ≥ 0 without loss of general-
ity. We can rewrite Eq. (16) as

kT1T1
B̃ − T1

kT1 − T1
≤ B̃. (17)

Since kT1 − T1 > 0, we have

kT 2
1 (B̃ − T1) ≤ (kT1 − T1)B̃.

We simplify both sides and get an explicit expression for k:

k ≥ B̃
T 2

1 − T1 + B̃
.

Applying the boundary condition on both sides in Eq. (17), the 
equality is reached when B̃ = T2, and, hence, we have

k = T2

T 2
1 − T1 + T2

= T2/T1

T1 − 1 + T2/T1
= k

T1 − 1 + k
.

The value of k is therefore bounded by 2 − T1, i.e.,

k ≥ 2 − T1 > 1. (18)

That is,

T1 < 1. (19)

The range for k and T1 ensures that the shrinkage function always 
suppresses the noise coefficient amplitude.

Fig. 2 depicts the thresholding functions. Since all these func-
tions are symmetric about the origin, only the positive side of each 
function is illustrated. Our proposed shrinkage function retains the 
original coefficients for the ones with large amplitude and allows 
gradual suppression between the two cutoff thresholds to avoid ar-
tifacts.

Our ABWS method is described in Algorithm 1. In the speaker 
recognition process, speech signals are processed with ABWS 
method before they are used for training a speaker model or per-
forming classification.



JID:YDSPR AID:1630 /FLA [m5G; v 1.134; Prn:1/07/2014; 16:02] P.5 (1-11)

S.M. Govindan et al. / Digital Signal Processing ••• (••••) •••–••• 5
Fig. 2. Three shrinkage functions. Since the function is symmetric about the origin, only the positive side is illustrated. (a) Hard thresholding function. (b) Soft thresholding 
function. (c) Dual-threshold quadratic shrinkage function.

Table 2
Experimental data sets and their properties.

Properties TIMIT KING

No. of speakers 438 male and 192 female 51 male
No. of sessions/speaker 1 10
Type of speech 10 phonetically rich sentences Extemporaneous descriptions of photograph to interlocutor
Microphones Fixed wide-band headset Dual: Wide-band and telephone handsets
Channels Wide-band/clean Dual clean: clean and PSTN
Sampling rate 16 kHz 8 kHz
Digital quantization 16 bit 16 bit
Algorithm 1 Adaptive Bionic wavelet shrinkage.
1: Input: speech signal f .
2: Decompose signal f following Eq. (1) and Eq. (3) to get time adaptive Bionic 

wavelet coefficients.
3: for each highpass subband do
4: Estimate noise variance following Eq. (6).
5: Compute the thresholds T1 and T2 following Eq. (9) and Eq. (14), respectively.
6: Perform dual-threshold wavelet shrinkage following Eq. (12).
7: end for
8: Recover Bionic wavelet coefficients

B(ω) = 2
√

λ2 + 1√
π

B̃(ω). (20)

9: Apply the inverse wavelet transform to the modified coefficients B(ω) to get 
clean speech signal f̂ :

f̂ =B−1(ω). (21)

4. Experimental results and discussion

4.1. Experiment settings and evaluation metrics

Experiments are conducted to evaluate the performance of the 
proposed method in both controlled and uncontrolled environ-
ments. Data from TIMIT Acoustic-Phonetic Continuous Speech Cor-
pus [31] and the King database [32] were used in our experiments, 
properties of which are presented in Table 2.

In our experiments, ten noise types from the NOISEX-92 
database [33] were used including Babble (Multiple talkers) noise, 
HF channel noise, Train noise, Airport noise, Car noise, Street noise, 
Factory noise, Exhibition noise, Station noise and Restaurant noise. 
The clean speech utterance was corrupted by these noises and the 
energy level of the noise was scaled such that the SNR of the noise 
distorted voice signals was at scales of −5 dB, 0 dB, 5 dB, 10 dB 
and 15 dB.

When applying Bionic wavelet transform, the saturation con-
stant s in Eq. (2) was set to 0.8. Also the gain parameters p and q
were decided empirically to be 0.87 and 0.45, respectively. These 
parameters were used in both our method and the BWT based 
wavelet shrinkage method.

The quality of speech denoising was evaluated using both sub-
jective and objective distortion metrics. The objective metrics in-
Table 3
MOS 3 rating scale and description.

Rating Quality Distortion

5 Excellent Imperceptible
4 Good Perceptible, but not annoying
3 Fair Perceptible and slightly annoying
2 Poor Perceptible and annoying
1 Bad Perceptible and very annoying

clude Signal to Noise Ratio (SNR), Mean Square Error (MSE) and 
Itakuro–Saito (IS) distance [34] as follows:

SNR = f 2

n2
, (22)

MSE = 1

N

∑
( f − f̂ )2, (23)

IS = 1

2π

∑(
f

f̂
− log

f

f̂
− 1

)
, (24)

where f is the clean underlying signal, f̂ is the denoised sig-
nal, and n is the noise signal. The IS distance was proposed by 
Itakura and Saito [35] from the maximum likelihood estimation 
of short-time speech spectra under autoregressive modeling. We 
use f and f̂ in Eq. (24) to be consistent with the notation in 
other two metrics, but they denote the spectra of the reference 
and to-be-recognized speech signals. IS distance is a measure of 
the perceptual difference between the two spectra. Ideally, if the 
spectra match, the IS distance reaches zero; otherwise, IS distance 
is positive.

The average of human evaluations provides another means of 
assessing audio quality. A popular method is the absolute category 
rating test, in which volunteers are asked to rate audios using the 
discrete scale as described in Table 3. This test is commonly re-
ferred to as the mean opinion score (MOS) test and it provides a 
numerical measure of the audio quality [36]. In our experiments, 
ten human subjects were recruited to evaluate the processed voice 
signals based on MOS ratings.

Four noise suppression methods are used in our comparison 
including spectral subtraction (SS) [15], Iterative Wiener filter-
ing (IWF) [17], Ephraim–Malah Filtering (EMF) [16] and wavelet 
shrinkage using BWT [23].
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Fig. 3. A speech signal is divided into segments for feature extraction. Overlap is 
allowed between two adjacent segments.

Fig. 4. Recognition accuracy with respect to sample segment size and overlap per-
centage. The overlap is represented as the percentage of a speech segment size.

4.2. Speech feature extraction

There have been many features developed such as MFCC [37], 
MMFCC [38], LPCC [39], BFCC [40], and RPLP [41]. In our method, 
a speech signal was divided into fixed size segments (in terms 
of number of samples), and two adjacent speech segments could 
overlap (as depicted in Fig. 3), which makes a speech sample 
quasi-stationary. The acoustic features were extracted from each 
segment.

Fig. 4 illustrates the average recognition accuracy using K-
means and Linde–Buzo–Gray [42] (LBG) methods with different 
segment sizes and overlap percentages. In this experiment, we 
used MFCC features. As shown in this figure, when the segment 
size becomes larger, the overall performance drops (such a trend 
can also be observed in Table 4). Hence, based on our empirical 
results we used LBG method with the segment size of 512 and the 
adjacent segment overlap of 60%.

Table 4 lists the average recognition accuracy using the six fea-
ture extraction techniques and five speech segment sizes. Each 
element in this table is an average accuracy of all corrupted voice 
signals using the specified segment size and feature. In this com-
parison, we fixed the segment overlap percentage to 60%. The 
bottom row in each table lists the overall average accuracy with 
respect to a feature. It is evident that the MFCC + MMFCC method 
consistently yielded the best performance for all cases. Also worth 
of noting is that the recognition accuracy dropped as the speech 
segment size increased regardless of the feature used. The best 
performance is usually achieved with the segment size of 256 or 
512. This implies that features extracted from small speech seg-
ments provide better discrimination among speakers. Note that no 
matter what segment size and overlap size were used the entire 
speech signal was processed for recognition.
Table 4
Accuracy (%) comparison of feature extraction techniques and speech segment size 
using K-means and LBG methods.

K-means method

Segment 
size

MFCC MMFCC LPCC RPLP BFCC MFCC +
MMFCC

256 89.02 73.59 43.09 64.77 39.67 94.82
512 90.79 68.97 39.77 65.77 35.82 95.60

1024 83.52 72.28 30.68 46.17 23.73 86.48
2048 79.06 65.97 23.47 45.87 19.69 81.31
4096 74.15 53.98 20.78 29.78 16.26 76.22

Mean 83.31 66.96 31.56 50.47 27.03 86.89

LBG method

Segment 
size

MFCC MMFCC LPCC RPLP BFCC MFCC +
MMFCC

256 89.67 75.37 47.82 67.57 40.64 95.76
512 92.78 74.27 40.87 65.49 37.82 96.67

1024 86.42 72.08 30.98 58.23 25.27 88.49
2048 80.86 66.89 28.97 47.39 23.34 84.06
4096 75.85 38.98 25.65 38.86 20.07 78.32

Mean 85.12 65.52 34.86 55.51 29.43 88.66

Support vector machine

Segment 
size

MFCC MMFCC LPCC RPLP BFCC MFCC +
MMFCC

256 88.01 72.41 47.1 65.82 38.26 91.61
512 91.4 75.82 44.72 68.31 34.2 92.73

1024 85.31 70.03 39.5 63.27 22.84 85.83
2048 79.63 65.12 31.9 58.26 19.03 83.23
4096 72.4 54.52 27.8 42.08 17.94 74.7

Mean 83.35 67.58 38.2 59.55 26.45 85.62

With K-means, LBG method, and SVM, the combination of MFCC 
and MMFCC gives the highest performance consistently. The im-
provement rates with respect to the best MFCC and MMFCC perfor-
mances (underlined in the table) are 4.2% and 27.5%, respectively. 
It is evident that the improvement using the combination of MFCC 
and MMFCC was significant, which achieved the average recogni-
tion accuracy in the range of upper 90 s. Based on the results of 
these two experiments, we used LBG method with segment size of 
512 and overlap of 60% in the rest of our experiments.

4.3. Evaluation of noise suppression

In our experiments, factor k in our shrinkage function was cho-
sen empirically. We had k = √

2, that is, T2 = √
2T1. The adaptive 

subband threshold given by Eq. (9) decides the T1 threshold as fol-
lows

T1 =
√

2

2
T j, (25)

where j is the wavelet subband scale. Depending on the noise 
strength, T1 threshold usually lies in the range of [0 0.8].

Fig. 5 illustrates the temporal view and the power spectra of 
the voice signals using different noise-suppression methods. In 
this example, “factory noise” was added to the clean voice signal, 
which resulted in SNR = 0 dB. The left column shows the temporal 
view of the signals, and the right column shows the correspond-
ing power spectrum. With the presence of noise, signal energy was 
spread across the entire spectrum (as shown in Fig. 5(b)). Using SS, 
IWF, EMF, BWT based shrinkage methods and our ABWS method, 
noise was suppressed to different degrees. After noise suppres-
sion with SS and IWF methods, there still existed fairly high noise 
energy across all frequencies as shown in the spectrograms. It 
is evident that the enhanced speech signals obtained with EMF, 
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Fig. 5. Temporal and spectral views of the signals and the denoised results. (a) and (b) are clean and noisy signals. (c)–(g) are the denoised signal using SS method, IWF 
method, EMF method, BWT method, and our method, respectively.
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Table 5
Objective voice quality evaluation.

Metric Noise SS IWF EMF BWT ABWS

SNR −5 dB −0.43 −0.51 1.39 1.44 3.09
0 dB 4.97 8.04 9.74 9.71 11.45
5 dB 11.50 14.59 16.31 16.66 19.24

10 dB 16.24 19.41 21.49 22.87 26.15
15 dB 19.18 22.05 27.85 28.54 32.15

Mean 10.29 12.82 15.36 15.84 18.42

MSE (10−3) −5 dB 3.72 3.01 2.35 2.50 1.49
0 dB 5.14 3.94 3.32 3.10 2.35
5 dB 7.13 5.79 4.95 4.53 3.17

10 dB 13.74 9.83 7.73 6.77 4.97
15 dB 25.37 19.94 15.57 13.64 11.21

Mean 11.02 8.50 6.78 6.11 4.64

IS −5 dB 0.86 0.75 0.67 0.78 0.43
0 dB 2.00 1.70 1.31 1.51 1.25
5 dB 2.91 2.98 2.83 2.65 2.16

10 dB 3.19 3.16 2.86 2.67 2.02
15 dB 3.37 3.08 2.80 2.49 2.09

Mean 2.47 2.33 2.09 2.02 1.59

Table 6
Subjective voice quality evaluation using MOS test.

Noise SS IWF EMF BWT ABWS

−5 dB 3.48 3.60 3.82 3.92 4.04
0 dB 3.19 3.36 3.52 3.66 3.87
5 dB 2.65 2.92 3.07 3.35 3.62

10 dB 2.00 2.15 2.17 2.36 2.61
15 dB 1.20 1.30 1.39 1.52 1.65

Table 7
The average time cost to perform shrinkage-based denoising methods including 
hard thresholding, soft thresholding, fast adaptive shrinkage [43], and our method. 
The times are in seconds.

Hard thresholding Soft thresholding Fast adaptive shrinkage ABWS

31.36 43.67 63.71 72.47

BWT based shrinkage and our method were comparatively supe-
rior while EMF and BWT had some residual noise components in 
their middle to upper frequency range, as shown in Fig. 5(e) and 
(f). Compared to the clean voice signal (as shown in Fig. 5(a)), the 
result of our method (as shown in Fig. 5(g)) depicts the highest 
fidelity to the clean signal, which can also be observed in its spec-
trogram.

Table 5 lists the quantitative evaluation results using the SNR, 
MSE, and IS. Note that large SNR indicates superior signals; 
whereas small MSE and IS imply superior results. The SNRs are re-
ported in dB. The results represent the average across signals and 
noise types. All methods suppress noise to different degrees. As 
noise level increases, EMF, BWT, and our method (ABWS) demon-
strated much better performance. As shown in SNR, the difference 
can be as much as 8 dB between SS and ABWS. Our method con-
sistently yielded better results than the others, which agrees with 
the observation from the temporal/spectral plots depicted in Fig. 5. 
It is interesting to note that using the average IS measures we can 
clearly see the superior performance of EMF, BWT, and ABWS.

Alternatively, we conducted subjective evaluation based on MOS 
test. Ten volunteers were recruited and each person was asked to 
rate the voice according to Table 3. Each voice piece was repeated 
twice and randomly played back to the volunteer. If the two rat-
ings of the same piece were similar (i.e., less than or equal to one 
grade value difference), the average was recorded. If the two rat-
ings differ significantly, the voice was replayed in random order. 
Each voice was repeated up to three rounds if disparity in rating 
existed. Table 6 presents the average MOS rating of various noise 
types and across all subjects. Although the difference among rat-
ing of five methods was limited, it is not difficult to see that our 
proposed method was rated the best (the highest MOS rating).

We also examined the efficiency of noise suppression of our 
method. The methods were implemented with MATLAB and the 
computer used in our experiments includes 4 GB memory, Intel 
Core i5 2.8 GHz CPU and runs a Windows 7 operating system. 
The average time used to complete signal denoising is reported in 
Table 7. Provided with the additional steps to achieve a more ac-
curate description of noise components in wavelet subbands, extra 
time was required and hence our method was less efficient than 
the others.

4.4. Speaker recognition performance analysis

Table 8 summarizes the average recognition accuracy across all 
noise types using ten methods in comparison to ours. The col-
umn DEG shows the results of speaker recognition without any 
signal preprocessing. When noise dominates, the recognition accu-
racy was extremely poor. The average accuracy reached 0.8% with a 
standard deviation of 0.37 in the case of SNR = −5 dB. With noise 
suppression, the recognition rate was improved. The best perfor-
mance and the second best are highlighted with bold face font 
and underline in the table, respectively. The right most column 
lists the improvement rate with respect to the second best case 
for each SNR. It is evident that our proposed method ABWS ex-
hibits superior recognition performance under various noise cases. 
The standard deviation (STD) is shown in parenthesis. Except when 
SNR is −5 dB, our method yielded the smallest STD, which in-
dicates that our method consistently achieved better performance 
across all noise types and speakers. RASTA [8] method exhibited 
competitive accuracy. However, the standard deviation is greater 
than ABWS, which implies that our proposed method is more con-
sistent with greater accuracy.

Fig. 6 illustrates the recognition accuracy under ten different 
noise types. The height of each bar indicates the correct recogni-
tion rate, which is the average among all subjects. In almost all 
Table 8
Average recognition accuracy (%) across all noise types and speakers. The value in parentheses gives the standard deviation. DEG refers to degraded speech signal and the 
results show the recognition accuracy without any preprocessing. IMP denotes the improve rate.

SNR DEG SS IWF EMF BWT HMM GMM GMM-EM GMM-CMN RASTA ABWS

−5 dB 0.8 6.6 6.0 11.7 11.4 17.8 18.8 20.0 20.0 21.5 22.9
(0.37) (1.18) (1.95) (2.62) (2.44) (1.12) (1.22) (1.57) (2.68) (2.64) (2.09)

0 dB 4.5 22.7 19.8 29.6 29.0 37.4 37.1 39.8 40.1 41.2 42.5
(2.35) (4.52) (4.29) (5.24) (5.17) (2.29) (3.38) (2.43) (3.07) (3.08) (1.57)

5 dB 12.8 44.7 41.0 54.0 53.1 46.6 47.7 50.0 59.5 61.1 62.0
(3.89) (8.14) (6.8) (6.88) (6.04) (11.54) (11.37) (11.50) (2.87) (3.27) (2.39)

10 dB 18.6 58.2 54.6 65.3 65.4 62.8 66.1 67.1 72.5 74.2 75.8
(3.24) (7.94) (9.69) (10.01) (8.88) (12.57) (8.22) (8.21) (2.71) (3.01) (2.46)

15 dB 27.1 68.8 65.5 76.5 75.9 74.8 76.5 78.9 81.4 83.0 83.6
(6.79) (4.55) (4.92) (3.66) (3.31) (4.42) (3.59) (4.47) (3.07) (2.05) (0.53)
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Fig. 6. Recognition accuracy under ten different noise types. (a)–(e) depict the accuracies achieved by processing signals with different SNRs. Each group of bars consists of 
results for DEG, SS, IWF, EMF, BWT, RASTA and our method (ABWS), from left to right, respectively. The legend is shown on the top of (a).
cases, our method exhibits the best performance. It is interesting 
to note that our proposed method handles car, station, and restau-
rant noises most effectively on average. Compared to the second 
best results in each SNR scenario, our method improved the accu-
racy by about 100% when SNR = −5 dB, 0 dB, and by about 50% 
when SNR = 5 dB, 10 dB, and about 20% when SNR = 15 dB. It 
is evident that our method improved the recognition performance 
greatly, especially when noise was significant in the recorded voice 
signals. In some types of noise, e.g., car noise, our method exhib-
ited superior performance consistently across all SNR ratios, which 
is very important in real-world applications as mobile computing 
becomes pervasive.
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5. Conclusions

In this paper we describe a noise robust speaker recognition 
method using ABWS. Without knowing the noise characteristics 
or assuming a model of the underlying clean speech signal, our 
method leverages the sparsity of wavelet coefficients and automat-
ically suppresses noise to improve recognition accuracy. Compared 
to the wavelet shrinkage based methods, the proposed method 
automatically decides the subband coefficient thresholds that are 
proportional to the amount of noise contamination. The DuTS in 
our proposed shrinkage method ensures intact signal coefficients 
for the ones with large amplitude as well as minimum artifact 
through gradual amplitude suppression in the range of the two 
thresholds.

The evaluation is conducted using speech signals from two 
public available speech databases: TIMIT database [44] and King 
database [45]. Synthetic noisy signals are created by blending clean 
voice signal with artificial noise. Ten different types of noise were 
used, which represent a group of common noise sources. It was 
demonstrated that MFCC and MMFCC features from speech signal 
of small segment size (512 samples per segment) effectively cap-
ture the speech characteristics.

Both objective and subjective metrics were employed in our 
evaluation. It is evident that our proposed method exhibited great 
robustness in various noise conditions, especially when noise was 
significant in the recorded voice signals. The comparison study 
with state-of-the-art methods also demonstrated the superior per-
formance of the new method. Compared to the second best results 
in the SNR scenarios, our method yielded improved results consis-
tently.
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