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Abstract – We present a cluster-based sampling and 

ensemble method to learn from large, imbalanced data 

set for bleeding detection in CE videos. Our method 

selects training examples randomly according to the 

data distributions derived from clustering. Multiple 

training sets are created such that data balance is 

restored. The sampling probability is proportional to 

the cluster distribution, and within each cluster the 

probability of a sample being selected is proportional 

to the distance to the center of the cluster. Classifiers 

are evaluated to compute performance-based weights 

and the prediction is made by aggregating decisions 

from the ensemble. Experiments were conducted using 

8 annotated full-length videos. The cluster-based 

sampling provides training examples that preserve the 

innate data distribution with much less number of 

instances. Our experiments demonstrate that ensemble 

coupled with cluster-driven sampling achieves 

superior sensitivity and very competitive specificity. 

The one way ANOVA analysis reveals that our 

method greatly outperforms conventional SVM 

method.  

 

Key Words – Capsule Endoscopy, Classification, 

Clustering, Video Analysis  

 

I. Introduction 

Capsule endoscopy (CE) is an imaging technology 

that has revolutionized our ability to visualize the en-

tire small intestine non-invasively. The imaging com-

ponent of this system is a vitamin-sized capsule that is 

composed of a color CMOS camera, a battery, a light 

source and a wireless transmitter. The camera acquires 

two pictures every second for approximately eight 

hours and generates 256 × 256 images transmitted to a 

recording device worn by the patient. It has been used 

to examine the entire small intestine non-invasively 

and is used mainly to diagnose lesions beyond the 

reach of conventional push endoscopy and 

colonoscopy. Its clinical applications have shown great 

improvement in diagnostic yield for bleeding sources 

in patients with obscure GI bleeding, and in 

diagnosing and localizing the source of blood loss. 

More information and clinical applications of CE can 

be found in [1] and the reference therein.  

Among many efforts in computer aided diagnosis 

with CE videos, bleeding detection has been investi-

gated the most due to its clinical importance. The 

“Suspected Blood Indicator” function by the Given 

Imaging, a CE manufacturer, provides the capability of 

detecting blood in video frames. A study by Liangpun-

sakul et al. [20] showed that the overall sensitivity and 

accuracy of SBI were 25% and 34.8%, respectively. It 

exhibits better performance for active bleeding lesions 

in the small bowel with reported sensitivity and accu-

racy of 81.2% and 83.3%. This deficiency motivated 

studies in automatic bleeding detection. Color feature 

is adopted in many detection studies [13, 10] and 

texture features are used in applications particularly 

for detecting heterogeneous objects, e.g., ulcer and 

polyps [2, 29, 4]. The combination of color and texture 

has also been heavily experimented [22, 8]. On the 

other hand, neural networks [27, 29, 21], Support 

Vector Machines (SVMs) [24, 23], and thresholding 

[29] are used to make decisions. Despite the 

encouraging improvement, many previous studies 

were evaluated with a small number of samples and to 

the best of our knowledge no performance was 

reported with respect to entire videos. An important 

question awaits investigation: “Given relatively small 

number of positive examples from CE videos, how to 

train learning algorithms to achieve minimal false neg-

ative detections?”  

In this article, we present a novel method to learn 

from large, imbalanced data set for bleeding detection 

in CE videos. Our method uses a cluster-based 

sampling strategy to select training examples and 

create multiple distinct training sets such that data 

balance is restored. Using each training set, a classifier 

is built and evaluated with the rest of the examples to 

compute a performance-based weight. The prediction 

to a new instance is the weighted aggregation of 

decisions from all classifiers. With downsampling, the 

size of each training set is manageable by classifier. In 
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addition, since multiple training sets are created with 

randomly selected examples, the loss of information is 

suppressed such that the generalization performance is 

greatly improved.  

Our contribution to the bleeding detection in CE 

videos is twofold: 1) a novel sample selection method 

that analyzes sample distribution and intelligently 

selects subsets for training such that a close 

representation of the data distribution is reached as 

well as data balance is recovered; and 2) a 

performance-driven ensemble learning strategy that 

circumvents possible loss of information due to 

downsampling by weighting trained base classifiers 

with their performance measures. Our method pro-

vides a framework that integrates multiple image 

features and addresses the imbalance problem in the 

real-world CE video analysis with a statistically 

plausible solution. From the experimental point of 

view, our extensive experiments conducted with 8 full-

length videos reveal the possible drawbacks of training 

classifier with improper manually-selected data set and 

demonstrated a feasible remedy using cluster-based 

sampling and classifier ensemble.  

The rest of this article is organized as follows: 

Section 2 reviews the state-of-the-art methods in 

bleeding detection from CE videos. Section 3 

describes our method that uses cluster-based sampling 

and ensemble (CSE) to address the difficulties arose 

from large imbalanced data sets. Section 4 presents the 

experimental results using complete CE videos and 

discussions. Section 5 concludes the paper.  

 

II. Related Work 

 

Automatic detection of obscure bleeding in CE 

videos has been studied and Table 1 summarizes 12 

related works. Despite different features and 

classification methods used, the experimental data and 

performances vary greatly. Among these studies, 

results in eight studies were generated from 

experiments using 1000 examples or less [18, 2, 29, 

11, 22, 8, 12, 14, 15]. Four studies [17, 10, 19] used 

moderately larger number of examples. Comparing to 

the number of frames available in a CE video 

(approximately 50,000), however, the training data set 

size is much smaller. Ideally, if the training set is well-

selected and unbiased, the classifier can achieve 

satisfactory generalization performance. It is unclear 

how the samples are selected and if the cohort formed 

represents the true data distribution.  

Like many medical diagnosis applications, CE 

videos are full of negative examples and much less 

number of positive examples. That is CE videos are 

imbalanced in nature [29]. Classification with 

imbalanced data sets has been a well-known problem 

in many other fields of applications. The abundant 

examples from the majority class and significantly 

inadequate number of examples from the minority 

class affect the classification performance when 

applied to examine the entire video. The challenges lie 

in the misrepresented data distribution.  

Methods have been developed to address the 

challenges of imbalanced classification from both data 

and algorithm aspects. Data-centered methods rely on 

resampling to achieve equal or approximately equal 

number of instances from both classes [7, 16]. The 

Synthetic Minority Oversampling Technique proposed 

by Chawla et al. gained much popularity in generating 

instances for the minority class [7]. The arguments, 

however, are the increase of data size which could 

potentially exceed the capacity of our modem 

computing power; whereas the downsampling 

techniques are facing critiques on possible loss of 

information.  

In algorithm-centered methods, assumptions are 

made in favor of the minority class. There are many 

real-world applications that support such assumption. 

For instance, in medical diagnosis and surveillance, 

the rare cases (samples of the minority class) carry 

significantly greater values than the ordinary instances. 

To implement this assumption in algorithms, biased 

decision weights are commonly employed [9]. Another 

thrust of efforts is to construct classifiers using training 

instances from only the majority class, i.e., one-class 

learning [26]. The rationale is that ample instances 

from the majority class provide a well-defined class 

boundary. The difficulty lies in the subjectivity of the 

preference and the magnitude of the bias toward the 

minority class.  

Combination of data-centered and algorithm-

centered methods has also been investigated [3]. 

Research has explored generating multiple data sets 

and aggregating cost-sensitive classification. It was 

claimed improved performance in both handling large 

data set and overall accuracy.  All submissions should 

follow the guidelines of this journal for submission.  

 

III. Methodology  

       

Our method uses cluster-based sampling and 

ensemble and consists of three steps: feature extraction, 

data rebalancing via cluster-based sampling, and 

ensemble classification. Fig. 1 illustrates the diagram 

of our method. The rationale of downsampling is that  
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Table 1 Experimental data and detection outcomes. ‘-’ indicates not reported in the paper. 

Reported studies 

Data set size Performance 

Total Abnormal Normal Sensitivity Specificity Accuracy 

Kodogiannis and Boulougoura [14] 140 35 35 - - 95.7% 

Kodogiannis and Lygouras [15] 140 35 35 - - 97.1% 

Vilarino et al. [29] 400 100 300 - - 95.5% 

Coimbra and Cunha [8] 1000 - - - - 87% 

Lau and Correia [17] 1705 577 1128 88.3% - - 

Li and Meng [18] 60 30 30 65.2% 82.5% - 

Li and Meng [19] 3600 1800 1800 88.8% 84.2% - 

Li and Meng [22] 400 200 200 91% 93% - 

Jung et al. [10] 2000 1000 1000 92.8% 89.5% - 

Barbosa et al. [2] 204 100 104 98.7% 96.6% - 

Karargyris and Bourbakis [11] - 20 30 75% 73.3% - 

Karargyris and Bourbakis [12] 50 10 40 100% 67.5% - 

 

samples of the majority class are of great number and 

are likely to be redundant. Downsampling the majority 

examples balances the two classes. The possible loss 

of information in the process of downsampling could 

be leveraged via bootstrap aggregating classifiers, 

which are trained with balanced examples from both 

classes.  

 

 

 

 

 

 

 

 
Fig. 1: Our method consists of three steps: Feature extraction, Data 

rebalancing, and SVM Ensemble. The arrows depict the data flow.  

 

3.1 Feature Extraction  

 

We employ three image features in our method: 

color histograms, dominant color, and color co-

occurrence.  

 

Color Histogram (CH)  

Color histogram is widely used due to its concise 

representation of color information. Among many 

color spaces, HSV separates the luminance from 

chromaticness. It is usually represented with a 

hexacone, the central vertical axis of which denotes 

the luminance. Hue is defined as an angle relative to 

the red and ranges in [0, 2π]. Saturation is measured as 

a radial distance from the central axis of the hexacone. 

Its chromatic components describe color in a way that 

is most suitable to bleeding detection [23]. Hence, 

video frames are converted to HSV color space and 

each color component is normalized to [0, 1] and 

sampled with 256 bins.  

 
Dominant Color (DC)  

The dominant color consists of eight representative 

colors, variances for each color, and their percentages 

in the image [25]. The descriptor is presented as a 

vector in the following format and the total 

percentages of the colors in the image sum to 1.  

                                    (1)  

where    is the i-th dominant color,    is its percentage, 

   is the color variance.  

For each video frame, colors are clustered and the 

mean color is used to represent each cluster. This re-

sults in a much smaller number of colors. The variance 

of dominant colors is computed for bleeding and non-

bleeding frames. Despite possible information overlap 

with CH, DC delivers a more concise color description 

and suppresses the color variance as well as the 

number of colors.  

 

Color Co-occurrence (CC)  

The color co-occurrence matrix follows the classical 

computation of co-occurrence matrix and contains the 

frequency of color pair within a pre-defined distance, 

i.e., (△x, △y). In an 8-bit color image, there are 

possible     colors. To reduce the matrix size, we 

quantize the color into a set of representative ones. In 

addition, to eliminate rotation variance in the image 

plane, we omit the direction of the spatial location of 

two pixels and only keep track of the pixel distance, 

i.e.,          . Because the matrix is symmetric 

with respect to the major diagonal line, our feature 

vector only uses the components in the upper triangle 



American Journal of Science and Engineering, Vol. 1, No.1, 2012                                                                                           
 

      4 
 

matrix.  

 

3.2 Cluster-based Sampling  

 

The imbalance ratio in CE videos is usually 

significant, which can be as much as 1000:1 (refer to 

Table 2 for examples). Randomly downsampling the 

majority class to rebalance the training data could lose 

critical instances; whereas upsampling the minority 

class results in much larger data set that exceeds the 

capacity of modern computers. We propose a 

downsampling strategy based on unsupervised 

clustering of the data set followed by a probability-

driven sampling from each cluster to preserve the 

geometric structure of the data set with less number of 

instances. Our sampling strategy is inspired by the 

observation that CE video frames within a temporal 

neighborhood are highly correlated. That is, these data 

points are close to each other in feature space and, 

hence, form a cluster. Frames that contribute to a 

cluster are not necessarily temporally adjacent. 

Retaining a number of samples from each cluster could 

maximize the preservation of the original data 

distribution with a smaller set of data points. Our 

hypothesis is that the instances close to the centroid of 

the cluster are less influential to the classifier than the 

ones close to the boundary of the cluster. Hence, we 

sample each cluster according to its innate distribution 

area and the sample distance to the centroid. The 

sampling probability is proportional to the cluster 

distribution, and within each cluster the probability of 

a sample being selected is proportional to the distance 

from the sample to the cluster center. Let    be the j-th 

cluster with    samples. The probability of a sample c, 

      , being selected is computed as follows: 

 ( )  
  

∑   
 
   

 
‖   ̅ ‖

∑ ‖    ̅ ‖
  
   

  (2) 

where   ̅  is the mean of the j-th cluster and J is the 

number of clusters. Function ‖    ̅‖  computes the 

distance of c to   ̅. The first term in Eq. (2) gives the 

overall probability of samples selected from   . The 

second term decides the selection probability of 

samples inside   . The denominators ensure the sum of 

probabilities of all samples in the majority class is 

unit.  

Depending on the nature of data distribution, the 

within-cluster probability can be modified. For 

instance, inverse multi-variant Gaussian function 

provides gradual descent of probabilities from the 

centroid. For simplicity, we use Euclidean distance in 

our probability modeling. 

In our method, k-means clustering is employed. 

For each cluster   , a probability, p(c), is computed 

and assigned to each instance c. The cumulative 

probability function  (  ) of the cluster integrates the 

probability of all instances in   . In our sampling 

process, we compare a uniform random number r with 

 (  )  and select the sample that defines the range. 

Since the overall probability of a cluster is factored by 

the number of its instances, the random number is 

generated in the range of [0, T] and   
  

∑    
. An 

instance is removed from the cluster to prevent 

duplication. Removing an instance changes the 

cumulative probability P and the random number 

upper bound T. Hence P is updated in the iterations. 

Algorithm 1 summarizes our cluster-based sampling 

method.  

Algorithm 1: Cluster-based Sampling 

1. Generate J clusters from    using k-means algorithm 

2. for all     ,             

3.    Compute    and   ̅ for cluster    

4.    for all       

5.       Compute  (  ) using Eq. (2) 

6.    endfor 

7.     ̃     $ 

8.        (  ) and   
 ̃ 

∑    
   

9.    for      to 
    

∑    
 

10.       Generate uniform random number         
11.        ̃( )      such that     (  ) 

12.                    and   ̃    ̃    

13.           (  ) and   
 ̃ 

∑    
  

14.    endfor  

15. endfor 

Fig. 2 illustrates a visualization of our clustering 

result to the majority examples in one training video. 

Ten clusters are used in this example. Out of 4096 

feature components, 2 are retained to accommodate 2-

dimensional visualization space. Our feature selection 

is based on Fisher discriminant analysis and retains the 

two that give the best separation of the clusters. It is 

clear that the instances close to the origin are showing 

strong greenish color; whereas the far right of the x-

axis depicts reddish color. The top of the space are 

filled with instances with wiggling folds and the lower 

part of the space is dominated with images with no 

significant texture.  
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3.3 Aggregation of Classifiers Trained with Multiple 

Features 

 

A major concern of downsampling the majority 

class to rebalance the training set is the potential of 

missing critical instances and hence results in lower 

generalization performance. Without knowledge of the 

majority class distribution and the spatial relation of 

the two classes, a sampling process cannot guarantee 

that the downsized data set represents the information 

of the available data for the advantage of 

classification. Ensemble classifier is promising in that 

multiple dissimilar downsampled data sets provide 

balanced training set with comprehensive coverage of 

the majority class data distribution. The idea of 

bootstrap aggregating with SVM was broadly used in 

many problems and was originally developed to 

improve the estimation accuracy of weak classifiers 

[5,28]. The classifier ensemble labels an instance by 

aggregating decisions of all classifiers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

In our classifier ensemble, several SVMs are 

trained independently using training set created by our 

sampling method. Let   ,          , denotes a set 

of samples that are created using Algorithm 1 from a 

training set V. Let    be the discriminant function 

obtained through SVM learning using   . The label for 

an unseen instance,   , is computed by aggregating the 

decisions of the trained classifiers as follows: 

            (   )        (∑   
 
      (         ))  (3) 

The    is a weight to the discriminant function    and 

is proportional to the generalization performance of    

to the data set V:  

                                  
 (  )  

∑  (  )
 
   

 (4) 

where  (  ) denotes the metric function for evaluating 

the performance of   . The choices of   are many. In 

our implementation, we used sensitivity for  .  

An SVM is a hyperplane that maximizes the class 

margin. Suppose data points are represented as 

 (     ) (     )   (     ) ,          , and each 

    is an N-dimensional vector. The hyperplane takes 

the form of        . In the linearly non-

separable classification problems, soft margin SVM 

allows, but penalizes, examples that fall on the wrong 

side of the decision boundary. A general form of the 

quadratic programming problem with soft margin and 

nonlinear classifier is as follows: 

 

   
 

 
‖ ‖        

              subject to   (   (  )   )       (5) 
               

 

where   denotes training error and C provides a 

weighting between regularization term and the training 

error. The function   is a mapping from    to a 

higher dimensional space. Details on SVM and its 

implementation can be found in [6]. 

 

IV. Experimental Results and Discussion 

 

4.1 Data Preparation 

 

Eight CE videos were annotated by a 

gastroenterologist in our team. Frames were extracted 

from the raw video and converted into images in JPEG 

format. The frame size is         or         

(see Table 2) with 8-bit color depth. The bounding 

black region in CE frames was removed, which is 

outside the field-of-view of the CE camera. A 3 by 3 

average filter was used to suppress random noise.  

Over-exposed (usually at the start of the video 

before the CE device enters the digestive tract) and 

very dark frames (usually the ones picturing feces) 

were removed since these frames are easily 

identifiable and could present erroneous information to 

the classifier training. Examples of such extreme 

frames are shown in Fig. 3. An empirical threshold 

was used: if more than 65% of the pixels within the 

field of view are either black or white, the frame is 

considered as an extreme frame. The elimination of 

extreme frames was applied to each video before 

image features were extracted.  

 

 

 

 
Fig. 2 2D distribution of ten clusters. One image is shown for each cluster. 
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Table 2 lists the number of frames and imbalance 

ratio of the videos. Out of the 8 videos, frames from 2 

videos were used as training data for classifiers and the 

other 6 videos were used as testing data. The data sets 

from the two training videos are representative in that 

both videos are highly imbalanced with a large number 

of negative examples (i.e., frames with no bleeding 

signs).  
 

Table 2 Properties of the videos used in our experiments. 

 

Video 

index 

Total # 

frames 

Bleeding 

frames # Ratio Frame size 

Test 

1 53,526 52 1030:1         
2 55,460 691 80:1         
3 53,219 590 94:1         
4 56,721 51 1112:1         
5 54,522 588 93:1         
6 52,340 82 638:1         

Train 
7 51,450 465 111:1         
8 56,457 33 1711:1         

 

For performance evaluation, we adopted widely used 

metrics: sensitivity (  ) and specificity (  ): 

                    
  

     
  and     

  

     
  (6) 

 

4.2 Effect of Manually Selected Small Training 

Samples 

In our first experiment, we trained SVMs (based 

on libSVM [6]) with 800 images, in which 400 are CE 

frames showing obscure bleeding and the rest show 

normal tissues. Images of both classes were selected 

by our gastroenterologist. In these experiments, we 

used the color histogram and the raw pixel value in 

both RGB and HSV color spaces. Based on our 

previous studies [23], both polynomial and radial basis 

produced satisfactory results in classifying CE frames. 

In this study, we used radial basis function kernel with 

variance empirically selected as 0.0013.  

Table 3 presents the results of our classifiers using 

manually selected balanced training data sets. The size 

denotes the percentile of examples used in training 

SVMs. The rest was used in testing. For example, for 

80%, 640 images were used in training and about 160 

images were used in testing. The training examples 

were selected randomly in each trial. The experiments 

were repeated for 10 trials, and the average results 

were reported together with standard deviations 

(STD).  

The highlighted results illustrate the best 

outcomes. Between histogram and pixel value, there is 

no significant difference in performance. With the 

same color space, the two metrics give very 

comparable results. However, histogram-based feature 

provides more concise description of the view. The 

HSV color representation demonstrates better results 

than those of the RGB color representation. The mean 

sensitivity and specificity as well as the standard 

deviations are in the close range of 90%. If we aim to 

maximize the performance, the HSV histogram gives 

the best overall detection rates.  
 

Table 3 The performance of bleeding detection using balanced training 

examples. The STDs are listed in parenthesis. 

Feature Training data       

RGB 
Histogram 

80% 93.8% (2.4) 82.6% (4.5) 

60% 92.6% (2.3) 78.3% (3.4) 

40% 93.1% (2.5) 78.0% (3.4) 

RGB raw 

Pixel value 

80% 91.8% (1.7) 80.7% (5.2) 

60% 91.8% (2.9) 80.7% (3.3) 

40% 90.4% (3.3) 77.6% (2.8) 

Mean  92.5% 79.7% 

 

HSV 

Histogram 

80% 96.8% (1.8) 93.8% (1.4) 

60% 96.2% (0.9) 93.9% (2.9) 

40% 95.1% (1.1) 89.3% (5.0) 

HSV raw 
Pixel value 

80% 97.5% (2.9) 86.3% (1.8) 

60% 95.6% (3.4) 86.9% (3.5) 

40% 92.6% (4.6) 87.0% (2.1) 

Mean  95.6% 89.5% 

 

In our second experiment, we applied the trained 

classifier to the CE videos. Table 4 reports the 

performance of our classification. Six videos were 

used to test the previously trained classifier. The mean 

sensitivity is at 60.6%; whereas the specificity is at 

88.1%. Comparing to the previous 95.6% (sensitivity) 

and 89.53% (specificity), the degradation is 

significant. A major factor is the misrepresentation of 

data distribution from the training data set.  
 

Table 4 Results HSV histogram SVM classifier, without re-balancing. 

Video       

1 61.5% 88.3% 
2 60.2% 88.1% 

3 59.3% 89.1% 

4 61.2% 87.9% 
5 62.7% 86.9% 

6 58.5% 88.4% 

Mean (STD) 60.6% (1.5) 88.1% (0.7) 

 

 

 

   
Fig. 3 Examples of over-exposed frame (a) and dark frame (b). 
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4.3 Performance Analysis 

 

In constructing classifier ensemble, three sets of 

image features were extracted: Color histogram (CH), 

Dominate color (DC), and Color co-occurrence (CC). 

The parameters used for these image features are as 

follow: in color histogram feature, we used HSV (Hue-

Saturation-Value) space with 256 bins for each 

component; in dominant color, 16 most prominent 

colors were selected to compute the feature vectors, 

and the radius used in color co-occurrence is selected 

as 5. For each set of features, three SVMs were 

generated. The selection of training images follows our 

cluster-based sampling method in Algorithm 1. The 

number of clusters was empirically chosen as 40. In 

this study, we employed radial basis function as the 

kernel for SVMs with the variance at 0.0024.  

Table 5 lists the results of method. Each row 

presents the test performance with one entire video. 

The average performance and its standard deviation 

are reported. The sensitivity and specificity for each 

image feature are average of three individually trained 

SVMs. In contrast to the results in our second 

experiment (as shown in Table 4), using the same 

image feature and classifier, the outcomes are better 

with the sensitivity in the lower 70% and specificity in 

the lower 90%; whereas SVM trained with manually 

selected balanced data resulted sensitivity in the lower 

60% and specificity in the upper 80%. The testing 

results using the other two image features are slightly 

better in sensitivity. The ensemble outperformed all 

the classifiers with average sensitivity at 81.4% and 

average specificity at 93.3%.  
 

Table 5 Results from average SVM using rebalanced data sets.} 

Video 

CH DC CC CSE 

                        

1 69.2 93.4 75.0 91.5 76.9 90.1 82.7 92.2 

2 72.2 92.1 76.6 90.3 77.4 87.9 78.3 94.3 

3 70.3 92.6 75.5 94.2 73.2 90.5 82.0 93.1 
4 72.5 94.9 76.5 92.3 72.5 91.5 80.6 94.1 

5 68.9 93.7 70.4 93.1 76.5 90.7 81.4 92.5 

6 71.1 91.2 75.6 94.2 70.7 92.3 83.1 93.6 

Mean 70.7 93.0 74.9 92.6 74.5 90.5 81.4 93.3 

STD 2.3 1.7 5.3 2.4 7.7 2.2 3 0.7 

 

Fig. 4 illustrates the box plots of the sensitivity 

and specificity between our method and the SVM 

trained with manually selected data set. It is interesting 

that even without constructing an ensemble the cluster-

based sampling improves the classifier performance. 

The column CH and SVM was resulted from trained 

SVMs using the same image features (color 

histograms). The mean sensitivity and specificity are 

improved from 60.6% and 88.1% to 70.7% and 91.2%, 

respectively. Using one-way ANOVA analysis of the 

results using cluster-based sampling and manually 

selected balanced training data, the p-values of the 

sensitivity and specificity are 4.22E-7 and 1.27E-5, 

respectively. This indicates a fairly significant 

improvement originated from our sampling algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 shows the average performance over 6 

videos of the conventional SVMs trained with 

weighted samples. Sensitivity and specificity are 

grouped for each image feature. The minority 

instances are assigned with greater weights to achieve 

a balance For instance, in the case of 1:50, all minority 

instances are weighted 50; whereas all majority 

instances are weighted 1. The average imbalance ratio 

in our data set is close to 1:150. With the increase of 

weights, sensitivity improves and specificity drops. 

When small weight is used, e.g., 1:1, the trained SVMs 

exhibit poor sensitivity and greatest variance. By 

applying large weight to minority instances, the 

sensitivity can be boosted to upper 70s with dominant 

color feature in sacrifice of specificity. In addition, it is 

 
Fig. 4 Box plots of sensitivity (dash line) and specificity (solid line) of our 
method and the SVMs trained with manually selected data set. 

 
Fig. 5 Sensitivity and specificity of SVMs trained with weighted samples. 
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evident that the improvement of sensitivity by 

increasing weight levels out as weight increases.  

Table 6 reports the F-test results and p-values 

using pair-wise one-way ANOVA analysis. Each 

method is compared against the CSE method and 

SVM classifier. The results produced using CSE as 

reference show great improvement in sensitivity. The 

F-test and p-value in comparison to SVM are 479.79 

and 8.8E-10, respectively. The specificity difference 

between CSE and the three features is not significant. 

However, as shown in Fig. 4, the specificity of CSE is 

more consistent than other methods. From the results 

produced using SVM as reference, it is clear that 

dominant color achieved most improvement in 

sensitivity (the F-test and p-value are 161.31 and 

1.71E-7, respectively) and color histogram 

outperformed the other images features (the F-test and 

p-value are 64.15 and 1.17E-5, respectively), which is 

coincide with our observation from Fig. 4. 
 

Table 6 F-test results and p-values of one way ANOVA analysis. 

CSE as reference CH DC CC SVM 

   F-test 128.5 29.6 26.1 479.8 

 p-value 5E-7 2.9E-4 4.6E-4 8.8E-10 

   F-test 0.3 1 15.9 129.4 

 p-value 6.3E-1 3.6E-1 2.6E-3 4.8E-7 

      

SVM as reference CH DC CC SVM 

   F-test 133.2 161.3 116.8 479.8 

 p-value 4.2E-7 1.7E-7 7.8E-7 8.8E-10 

   F-test 64.2 41.4 12.3 129.4 

 p-value 1.2E-5 7.5E-1 5.6E-3 4.8E-7 

 

V. Conclusion 

 

In this paper we describe a cluster-based sampling 

and ensemble method to learn from large, imbalanced 

data set for bleeding detection in CE videos that 

minimizes false negative decisions. Our method 

selects training examples randomly according to 

unsupervised clusters and creates multiple training sets 

such that data balance is restored. The sampling 

probability is proportional to the cluster size, and 

within each cluster the probability of a sample being 

selected is proportional to the distance to the center of 

the cluster. The prediction to a new instance is the 

weighted aggregation of decisions from all classifiers. 

With downsampling, the size of each training set is 

greatly reduced. In addition, since multiple training 

sets are created with randomly selected examples, the 

loss of information is greatly suppressed. 

Based on our experiments, the following 

conclusions can be drawn. First, the cluster-based 

sampling provides training examples that preserves the 

innate data distribution with much less number of 

instances. Using the same number of training instances 

and the same image features, it is evident that the 

sampling algorithm contributes to the improvement of 

the classifier performance.  

Second, the classifiers trained with different image 

features achieved much improved results using 

sampled data set. The dominant color and color co-

occurrence give better sensitivity and the color 

histogram gives higher specificity.  

Third, the ensemble integrates individually trained 

SVMs and achieves superior sensitivity and very 

competitive specificity. The one way ANOVA 

analysis illustrates that our method greatly 

outperforms conventional SVM method. The possible 

loss of information due to downsampling is 

successfully circumvented. 

Last, we demonstrated the generalization 

degradation of using misrepresented training data set 

by constructing an SVM with manually selected, 

balanced data set of 800 images and applying the 

trained classifier to full-length videos. The testing 

performance degraded significantly. This is because 

the training data misrepresent the true data distribution 

of the CE video frames. Such misrepresentation is 

exaggerated when there is a large majority data set and 

only a small number of instances are selected for 

training. 
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