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Abstract: Reviewing video of capsule endoscopy is a tedious work that takes
hours. Hence, efficient and scalable approaches are needed to automate the
process of large dataset and be able to refine the model given new examples.
This paper presents an incremental SVM to learn from large dataset with
dynamic patterns. Our method extends the reduced convex hull concept and
defines the approximate skin segments of convex hulls. Experiments were
conducted using synthetic data set, real-world data sets, and CE videos. Our
results demonstrated highly competitive performance that requires much less
resource, which cast new light on learning with limited resource.
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1 Introduction

Wireless capsule endoscopy (WCE) is a recently established technology that requires
no wired device intrusion and can be used to examine the entire small intestine non-
invasively. The imaging component of this system is a vitamin-sized capsule that is
composed of a color CMOS camera, a battery, a light source anda wireless transmitter.
It provides a 140-degree field of view and generates256 × 256 images. Once the device
is activated, it is ready to take pictures. The camera acquires two pictures every second
for approximately eight hours, transmitting images to a recording device worn by the
patient. By using a lens of short focal length, images are obtained as the capsule is
propelled through the tract. Unlike conventional fiber-optic endoscopy, WCE requires
little patient preparation and can potentially image any section in the digestive system.
The ability of WCE to detect undersized lesions in the small intestine is ideally suited
for this particular role. It enables physicians to examine the entire small intestine, a
region that was previously difficult to view at all, and provide a new non-invasive
gastrointestinal (GI) visualization technology. The diagnostic yield using WCE is much
higher compared to other endoscopic imaging methods. Capsule endoscopy has the
potential for use in a wide variety of illnesses.

Recognizing where a WCE frame is taken in the digestive tract is vital to diagnosis
and treatment deployment. An important question that oftenarises at diagnosis is where
the lesion is found. Reviewing WCE videos and estimating the anatomical locations of
WCE frames are, however, very difficult, even for experiencedreaders. The primary
reasons are inconsistent speed of WCE device and lack of physical landmarks. The
current technology relies on wireless signal strength, which is used to calculate the
distance of the device to the data receiver. This method provides very coarse anatomical
trace. A common practice by physicians is reading WCE frames to identify some
specific gastrointestinal (GI) images, known as GI landmarks, that indicate entrance to
a GI section [1, 2].

With improved optical sensors the size of each image captured is expected to
increase. In addition, to obtain better generalization performance and avoid curse of
dimensionality, we expect to train classification algorithms using videos of multiple
human subjects. The implementation of classification algorithms that require all training
data to be present in memory make the learning task extremelychallenging. Existing
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classification algorithms are facing difficulties in handling large number of training
samples.

Incremental learning has great potential to handle these challenges. At each
incremental step, only the samples that are useful to build future classifiers along with
model information is retained. When new data becomes available, they are integrated
with the retained samples, and the model is updated and/or trained to build a new
classifier. Support Vector Machines (SVM) [3] is a supervised learning algorithm
that can be applied to classification or regression. The SVM algorithm is based on
the statistical learning theory. This article focuses on extending SVM to multi-class
classification with large training data set. In general it isutilized to solve binary
classification problems and is more robust, less computationally expensive in comparison
with linear classifiers. Multi-class SVM (MSVM) is used to classify samples belonging
to more than two classes in a data set. A single MSVM can be considered as a group
of binary SVMs, which are assumed to yield an output that assigns more weight to
samples which belong to positive class and less weight to samples from negative class.
The binary classifiers can be built as One-against-all (OvA)[3] and One-versus-one
(OvO) [4].

The rest of this paper is organized as follows. Section 2 presents our methods and
discusses two algorithms for identifying extreme points from a convex hull and our
learning algorithms for learning large data set using the skin of reduced convex hulls.
Section 3 presents our experimental results using synthetic data, real world benchmark
data sets, and our capsule endoscopy videos. Section 4 concludes this paper with
summary and our future extension.

2 Methodology

Geometric SVM represents two classes as convex hulls and solves the problem by
finding the minimum distance between the two [5]. Given a setX = {x1, x2, . . . , xn},
the functionφ maps each instance into the feature space, i.e.,φ(xi). For simplicity, we
useφi to denoteφ(xi) and the mapped points form a feature setΦ = {φ1, φ2, . . . , φn}.
The convex hull,C(Φ), is hence a linear combination of all the instances inΦ:

C(Φ) =

{

k
∑

i=1

αiφi| φi ∈ Φ, 0 ≤ αi ≤ 1,

k
∑

i=1

αi = 1

}

(1)

To address linearly non-separable classes, soft convex hulls [6] (or Reduced Convex
Hull (RCH) [7, 8]) was proposed. The RCH,R(Φ, µ), is the set of convex combinations
of instances inΦ with αi bounded by aµ, µ ≤ 1. Following convex hull formula, an
RCH is expressed as follows:

R(Φ, µ) =

{

k
∑

i=1

αiφi| φi ∈ Φ, 0 ≤ αi ≤ µ,

k
∑

i=1

αi = 1

}

. (2)

By selecting appropriateµ for each class, a linearly non-separable problem can be
transformed to a linearly-separable case [8]. The decisionboundary is then perpendicular
to the nearest points between the two RCHs derived from training samples. An example
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is shown in Figure 1. Figure 1(a) and (b) illustrate convex hulls of two linearly non-
separable classes and the separating hyper plane. Figure 1(c) depicts RCHs that retract
for form the linearly separable case.
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Figure 1 (a) Two linearly non-separable classes consisting of 700 data points. (b) Decision

boundary is found by finding the nearest points between theR(µ = 0.5) of both
classes. (c) The classes are linearly separable usingR(µ = 0.5). (d) The
S(Φi, 0.5, 1) is retained for future iterations.

To overcome high computational demands from large data set,we propose to identify
and employ a subset of samples in the training process. Our method extends the RCHs
and defines the approximate skin segments of convex hulls. The intuition is that only
the samples within the skin are retained in training. When additional samples become
available, they will be used together with the skin of the convex hull constructed from
previous data set. Therefore, a much less number of instances is used in the training
process. On the other hand, we need to avoid possible exclusion of future support vectors
(SVs). Although no theoretical proof is given in this paper,with convex hulls constructed
in the feature space, the skin is essentially a superset of the possible SVs.
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Given an upper boundµu and a lower boundµl for αi, 0 < µl < µu ≤ 1, the skin,
S(Φ, µl, µu), of convex hullC(Φ) is the set of instances between two RCHs and can
be expressed as follows:

S(Φ, µl, µu) = {φi|φi ∈ {R(Φ, µu) − R(Φ, µl)}. (3)

Finding the skin of convex hull, however, is challenging dueto the lack of
knowledge of the data distribution. We propose a recursive method that finds the vertices
(i.e., extreme points) of a convex hull, which are used to represents the skin.

The projection of a vectorφk to a directiond = φb − φa is defined as the inner
product of the two difference vectors with respect toφa (the reference vector):

P (φk, d) = 〈φk − φa, d〉. (4)

The explicit expression of feature vectorsφi is not required to compute the extreme
points. The projectionP (φn, d(φm)) in the feature space can be achieved with the kernel
operation.
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Figure 2 Finding extreme points using center of gravity.

Intuitively, evaluating the projection magnitude of all data points in all possible
directions finds the complete set of extreme points. It is computationally infeasible given
a large data set. An alternative approach is to evaluate the data point projection in finite
number of directions. Our method finds the extreme points in two steps: 1) a set of seed
points are identified based on the center of gravity; and 2) the complete set of extreme
points are then found via recursively searching along the direction defined by a pair of
extreme points.

A set of seed extreme points are found using the gravity center. Using gravity center
could miss some less prominent extreme points following theabove procedure. An
example is illustrated in Figure 2(a). The solid squares denote the data samples and
the gravity center is marked with a large circle. The projected vectors are marked with
solid dots. Using our method, four extreme points are identified and highlighted with
solid squares. For instance, point 16 is identified as an extreme point since it gives the
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Algorithm 1 A recursive method for finding extreme points. Probing(Φ′, d, φp, φq)

1: Input : Φ′ ⊆ Φ, d, φp, andφq

2: Output : set of extreme pointsF
3:

4: F ← ∅
5: Randomly selectφm ∈ Φ′ andm 6= p,m 6= q

6: if Φ′ 6= ∅ then
7: Identify probing directiond∗ using Eq. (5)
8: if 〈d∗, d〉 < 0 then
9: d∗ ← −d∗

10: end if
11: d∗ ← d′∗

||d∗||

12: F ← F
⋃

{φe|φe = arg max
φk∈Φ′

P (φk, d∗)}

13: for all φi ∈ Φ′ do
14: if P (φi, d

∗) > 0 then
15: Φ′′ ← Φ′′

⋃

xi

16: end if
17: end for
18:

19: F ← F
⋃

Probing(Φ′′, d, φp, φe)
20: F ← F

⋃

Probing(Φ′′, d, φq, φe)
21: end if
22: return F

greatest projection tod(x16, X̄) (as well asd(x15, X̄)). However, instances 14, 15, 17,
and 18 are the extreme points but are missed by the process.

Provided with a set of seed extreme points, our algorithm recursively searches along
the perpendicular directions of the convex hull boundaries, which is lists in Algorithm 1.
The recursive steps start with randomly selected two seed extreme pointsφp, φq and
another instanceφm ∈ Φ. Search for extreme points is performed in the direction
perpendicular to the difference vector ofφp, φq, throughφm. Vector φq − φp splits the
space into two halves. The perpendicular searching direction d∗ can then be determined
as follows:

d∗ = φm − φp − P (φm, d(φp, φq))
φq − φp

||φq − φp||
(5)

Searching in each half space is achieved recursively using apair of identified
extreme points,φp andφq. Let Φ′ denote the instances in the half space. With a random
instanceφm in Φ′, a probing direction,d∗. d∗ points toward the outside of the convex
hull; Otherwise, change its direction. Hence, an extreme point is identified inΦ′. φm is
paired withφp andφq to split the feature space for further probing. The process stops
when no additional points exist inΦ′.

Figure 2(b) illustrates an example of probing in a half space. The two extreme
points are 9 and 14, which determines the probing direction.The dotted lines depict the
projections of the instances. In two iterations, extreme points 1 and 12 are found.

The learning task is defined asf : R
N → {−1,+1}, using a training set

{(x1, y1), · · · (xn, yn)}, wherexi ∈ R
N , yi ∈ {−1,+1}. The two classes are denoted
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with Φ+ = {φi : yi = 1}, Φ− = {Φi : yi = −1}. The quadratic and geometric solutions
of SVM have been shown to be equivalent [9, 10, 6, 11, 5]. In geometric SVM, the
two classes are represented by their convex hulls and findingsolution is equivalent
to identifying the nearest points of the two convex hulls. The optimal support vector
machine is hence the hyperplane perpendicular to the connection of the pair of the
nearest points of the two convex hulls.

The pair of nearest points from the two classes is denoted with (φ∗
+, φ∗

−) and satisfy
the following criterion:

(φ∗
+, φ∗

−) = arg min
φ+∈Φ+,φ−∈Φ−

(||φ+ − φ−||)

whereφ∗
+ ∈ Φ+, φ∗

− ∈ Φ−, are found using the Gilbert’s algorithm [12].
The steps at each incremental iteration to deal with linearly non-separable case is

summarized in Algorithm 2. Note that due to unforeseen data distribution, skin of the
same thickness for the distinct classes could enclose significantly different number of
samples. Although the original data set is balanced, the selected ones could tilt the ratio
and result in skewed training data set. The skewness of the training data set penalizes
the minority class implicitly [13]. To avoid the sample size-induced bias, two separate
skin parameters are determined by weighting using the ratioof number of samples from
each class seen, i.e.,µu+, µu−. A µl(< µu) is selected and the skinsS(Φi, µli, µui)
i = {+,−} (illustrated with filled triangles in Figure 1) are used to find the decision
boundary.

Algorithm 2 Learning from large data set using RCHs.
1: Selectµu

2: Construct linearly separableR(Φ+, µu) andR(Φ−, µu) using Algorithm 1
3: Select aµl+, µl+ < µu+, for the positive class. Without loss of generality, we

assume the positive class has less number of training examples.
4: Choose theµl− for the other class such that|S+| ≈ |S−|
5: Construct inner RCHsR(Φ+, µl+) andR(Φ−, µl−)
6: Retain samples inS(Φi, µl+, µu+) andS(Φi, µl−, µu−)
7: Derive the classifier using Gilbert’s algorithm [12]

3 Experiments

3.1 Data Preparation and Implementation

To analyze our method, we prepared a 2-D synthetic data set sothat the final classifier
boundary can be visualized. Examples of three classes are sampled from Gaussian
functions with different means and variances.

Six sets of real world data are used, within which five sets areobtained from the
UCI Machine Learning Repository [14] and a mammography dataset [15] is included.
Table 1 lists the properties of these real world data sets.

In our experiments, we use hierarchical SVM to achieve multi-class classification.
In the first level one-against-all for all classes is performed to find the class which
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Table 1 Properties of our experimental datasets.

Positive Sample Size
Datasets Dim. Class + Class - Class

Iris 4 Setosa 50 100
SPECT 22 1 212 55
Pima 8 1 268 500
Yeast 8 CYT 463 1,021
Ionosphere 34 b 126 225
Mammography 6 2 260 10,923

discriminates from the rest. The first level classifier is used to classify the class
identified. In the next level the one-against-all for remaining classes is repeated to find
the class which discriminates the rest of the remaining classes. This is repeated until all
classes can be classified.

The performance of our methods was evaluated using sensitivity S, specificityP and
accuracyA. Let TP, TN, FP, FN denote true positive, true negative, false positive, and
false negative counts, respectively, in the testing results. The three metrics are computed
as follows:

S =
TP

TP + FN
(6)

P =
TN

TN + FP

A =
TP + TN

TP + TN + FP + FN

3.2 Experiments with Synthetic and Real World Data Sets

Class 3 Vs Rest
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Figure 3 Results of hierarchical multi class classification. Contours of decision boundaries of

(a) Class 3 vs. Class 1 and 2 and (b) Class 1 vs. class 2.

Figure 3 illustrates the contour plots of decision boundarytrained with synthetic
data sets of three classes. The color depicts the distance tothe center of each class.
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Two classifiers were trained to partition the space into three parts that correspond to the
class distribution. The decision boundary for this exampleis denoted with the zero level
contour. Figure 3(a) illustrates the decision boundary of class 3 verses classes 1 and 2,
whereas Figure 3(b) illustrates the decision boundary of classes 1 and 2. The 2D contour
plots of the classifier demonstrate that our method predictsclass labels successfully in
the case of multi-class classification.

Experiments on UCI data sets were performed to evaluate the general applicabilit
of our learning method in a binary classification setting. Each feature in a dataset was
normalized with the mean value and the range of that feature.That is, each component
of an instance is in the range of[0, 1].

Figure 4 illustrates the classifier performance during the learning iterations. Ten (10)
repetitions were conducted with random initial training set. For each dataset, 50% of
the data were randomly selected and used for training. The remaining data were used
as the test set. In each case, a SVM classifier was created using all the training data.
The best parameters were selected based on their generalization performance with the
testing data set. The results from these classifiers are usedas reference and are depicted
as horizontal lines in Figure 4.

In our learning process, 10 samples were randomly selected from each class of
the training set and a SVM is trained. In each incremental step, 10 randomly selected
samples from the remaining training dataset were used to update the classifier. The
intermediate classifiers were evaluated with the test dataset. For each dataset, 10
repetitions were conducted and the average performance is plotted as a line in Figure 4,
the vertical line segments depicts the variance of performance in each incremental step.

With more examples included in the training process, the classifier trained with
our method improves its performance. It is evident in the cases of Yeast, SPECT,
Pima, and Ionosphere. In the cases of Iris and Mammography, the performance at the
very beginning is already superior and there is not much of space for improvement.
Hence, the change of performance in the following iterations is very trivial. However,
improvement in sensitivity can still be observed in the training using Mammography
dataset and by the end of iterations, classifier outperformed the batch learning by a small
margin.

Despite a slightly drop of specificity of the SPECT dataset, the SVMs trained with
our method achieved the same performance as or even outperformed the batch learning
method. It is interesting that in five cases (except Iris), the intermediate classifier had
a degradation in early iterations, but the training processwas able to recover to the
benchmark performance asymptotically as additional data instances are included for
training.

3.3 Experiments with Capsule Endoscopy Videos

The analysis tool provided by the manufacture of the Pillcamcapsule endoscopy plots
the trace of device throughout the digestive tract based on the wireless signal strength
to the external image downloader carried by the patient. Despite its large error margin,
it requires manually annotation by medical specialist the frame of pylorus, where the
capsule leaves the stomach and enters the intestine, and theframe of ileocecal valve,
between the intestine and colon. Our experiments on CE videos were performed to
automate the classification of the frames in CE videos into four natural digestive organs,
namely esophagus, stomach, small intestine, and colon.
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Figure 4 Results of learning error using real world data sets from the UCI repository. The
vertical bars depict the variance around the mean value.

We have collected 6 CE videos that are manually annotated by agastroenterologist.
Each video consists of approximately 55,000 frames that areextracted and saved as
JPEG images. Out of the 6 videos, we randomly selected one video to train, leaving the
remaining 5 for testing and evaluation.

In our previous experiments with CE videos, we found that HSVcolor space
gives better classification performance on average [16]. Inaddition, using histogram
significantly reduces the dimensionality (Each frame is a 256× 256 color image. If
pixel color is used, the dimensionality of each instance is up to 196,608.) Hence, we



Segmentation of CE Videos 11

adopted the color histogram in the HSV space as features. Thecolor histogram is
very large and sparse matrix as shown in Figure 5. Withn bins used in each color
component, there aren3 features using HSV histogram for every video frame, most of
which are zeros or close to zeros. To suppress sparseness andthe number of values
in features, only the hue and saturation (HS) components were used. As observed in
our previous experiments [16, 17], an advantage of using HS components is improved
robustness in handling lighting variations in the GI tract.As shown in Figure 5, the 2D
space spanned by HS components is dominated with small values. Hence, a minimum
bounding rectangle region of the HS space with non zero values was identified from the
training images. Only the values within the rectangular region of HS histogram were
used as features for our classification.

Average HS Histogram
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Figure 5 The average HS histogram of the CE video used in training. The rectangle denotes
the color space used in our learning and classification processes.

The order of classification of multi-class SVM was determined based on the
preliminary classification evaluation. In our experiments, identification of esophagus
gives the best accuracy followed by the identification of small intestine. Hence, the order
is determined and listed in Table 2. The kernels used to trainSVM are also included in
this table.

Table 2 Order and parameters of hierarchical classification of organs of CE videos

Order Dividing classes Kernel

1 Esophagus vs. Rest RBF(σ = 0.15)
2 Small intestine vs. Stomach and Colon RBF(σ = 0.1)
3 Stomach vs. Colon RBF(σ = 0.5)

In the learning process, 50 frames were randomly selected from each class of
the training video to train a SVM. In each incremental step, randomly selected 20
frames from the remaining training video frames were used toupdate the classifier.
The iteration repeats until the training examples exhaust.Table 3 lists the results of the
final classifiers tested using the test videos. The performance of our method is highly
satisfactory. With the majority of frames acquired in stomach and small intestine, the
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average accuracies are 86.9% and 94.4%, respectively. Images acquired in colon are
disturbed with noise from feces and fluid, which results in large number of dark images
and causes performance drop in the classification accuracy.

Table 3 Classification performance of digestive organs in CE videos

Video Esophagus Stomach Small Intestine Colon

1 100.0% 87.6% 94.2% 85.3%
2 94.4% 85.8% 95.3% 82.2%
3 95.0% 87.2% 94.7% 84.3%
4 100.0% 86.4% 94.1% 83.7%
5 90.0% 87.7% 93.9% 94.3%

At the end of incremental training only 12% of the frames werepart of the skins
among the four classes for the hierarchical SVMs. Apparently, the smaller number of
examples demands much less memory space for learning process and, hence, provides
a plausible mechanism for handling large amount of data set.When new samples are
added, the classifier is updated efficiently in contrast to the conventional batch learning
methods.

4 Conclusion

In this paper we presented an incremental SVM to learn from large data set with
emerging trend and dynamic patterns. To overcome high computational demands from
large data set, we develop a method to identify and employ a subset of samples in the
training process. Our method extends the reduced convex hull concept and defines the
approximate skin segments of convex hulls. The intuition isthat only the samples within
the skin are retained in training. When additional samples become available, they will
be used together with the skin of the convex hull constructedfrom previous data set.
Therefore, a much less number of instances is used in the training process.

Experiments were conducted using a synthetic 2D data set, six real world data sets
from UCI repository, and six CE videos. Our results demonstrated highly competitive
performance that requires much less resource. Based on our experimental results, the
following conclusions can be drawn.

• With more examples included in the training process, the classifier trained with
our method improves its performance.

• The training process was able to recover from an intermediate performance
degradation when additional instances are included for training.

• The average performance of classifying CE video is above 86.9%, which is very
competitive.

• The amount of memory space required in the training process could be one eighth
of what is required by the conventional SVM, which cast new light on processing
large data set within constrained resource.
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The accuracy for our CE video segmentation could be further improved if temporal
information is utilized. This method can be easily extendedfor other temporal signal
classification with large data size and non-stationary pattern.
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