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ABSTRACT

Due to the scan time limitation, our MRI studies of the human tongue can acquire only a limited number
of contiguous two-dimensional (2D) slices to form a volumetric data set in a given series. An interpolated
three-dimensional (3D) reconstruction using images acquired in a single plane presents artifacts. To
address this issue, we developed a wavelet-based bidirectional linear fusion method that uses slices
acquired from sagittal and coronal planes to estimate the unknown values of the inter-slice voxels. We
use an interpolation method to estimate the voxel value based on neighboring fiducial voxels in the
bounding slices. This interpolation is followed by a wavelet fusion to recover image details by integrating
prominent coefficients from the interpolated images. Our method was evaluated using 2D MR images
and 3D phantoms. Experiments demonstrated that our method reduces interpolation artifacts and greatly
improves the 3D reconstruction accuracy. The advantage of our method casts new light on MR imaging and
image processing and permits us to achieve high resolution and short acquisition time simultaneously.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

To test the hypothesis that the in vivo human tongue is a muscu-
lar hydrostat with a constant volume regardless of task demands,
we have embarked on a comprehensive study whereby serial 2D
MR slices are acquired for the whole tongue in static, task-induced
postures from the sagittal and the coronal planes. A precise image-
based tongue volume measurement is, therefore, crucial to this
project. It is our contention that a volume estimation based on 2D
segmentation is inherently inaccurate because of the incomplete
three-dimensional information. Several past volumetric studies
[1-4] have demonstrated that 3D segmentation methods produce
more accurate volume estimation than conventional 2D meth-
ods. The accuracy of 3D-based methods, however, depends on the
reconstructed volumetric images.

In our study, the requirement of breath-holding with maximum
effort tongue press limits our MR imaging time to roughly 20s in
a 3Tesla (3T) scanner. Because of the stringent timing, a three-
dimensional (3D) MR scan is infeasible. Within this time window,
a maximum of 19 contiguous slices of the tongue can be acquired
in the coronal plane at a slice thickness of 4 mm. The small number
of slices causes the reconstruction to have a staircase artifact using
images from any single imaging plane. With rigorous experimen-
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tal control of head position and movement during scanning, we
ensure that the two sets of slices acquired separately are aligned in
the 3D space. Fig. 1(b) and (c) illustrates a mid-coronal and a mid-
sagittal MR images of the tongue, respectively. By assembling all
the sagittal and coronal images in a 3D space (a sketch is illustrated
in Fig. 1(a)), our goal is to improve the 3D reconstruction by fusing
inter-weaved, multi-planar slices, as depicted in Fig. 1(d).

The value of a voxel can be estimated by a weighted sum of
the neighboring voxels. A number of interpolation methods have
been reported ([5]; see [6] for a review). In linear interpolation,
for example, the value of a voxel with no value is approximated
by the adjacent voxels and their distances to the target. Despite its
insufficiency in high-order continuity, this method has been widely
used because of its simplicity and efficiency. Cubic interpolation [7]
and B-spline interpolation have been developed [6] to address high-
order discontinuity. However, when applied to our intended 3D
reconstruction from two sets of MR slices in perpendicular planes,
these methods do not account for multi-planar image integration.

Methods to combine multi-planar slices for a more accurate 3D
reconstruction have also been investigated. Kuwahara [8] described
a contour-based reconstruction method for modeling a 3D heart.
By tracing the heart boundary in six images of three acquisition
planes (two images per plane), contours were obtained. A spline
was used to connect the intersection points. The contours are then
merged to form a denser 3D mesh. The need of manual tracing limits
its application, and the accuracy of the 3D model is bounded by
hand-tracing consistency and precision.
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Fig. 1. The slice view shows the images in both sagittal and coronal planes and a cross-cut in the transverse plane. (a) The coronal and sagittal planes. The transverse plane is
illustrated with a dashed line. (b) An example of a coronal scan. (c) An example of a sagittal scan. (d) A cross-section in the transverse plane that shows inter-waved sagittal

and coronal scans.

Goshtasby and Turner [9] proposed a distance-weighted fusion
method to reconstruct a 3D model using short-axis and long-axis
cardiac images. The voxel value is approximated with a weighted
sum of voxels within a neighborhood, and the weights are propor-
tional to the inverse distance to the target:

N ;.2 21
[(X y Z) . Zj:llj(r + Zpe{x,y,z)(p P]) )
b 9 - N 2 _] 9
Z:j=1(r2 + Zpe(x,y‘z}(p _pj) )

where I(x, y, z) is the value for the target voxel and I; represents the
known voxel values in a given window. A smooth factor r is used to
gain better visual results. For an effective interpolation, the window
size w needs to satisfy w = 2dr2 — 1, where d is the number of new
voxels between two image slices.

To achieve a more accurate reconstruction, Werahera et al. [10]
employed the shape of rotund objects. Assuming a hemispherical
shape for the prostate glands, their algorithm assigns unknown
voxel values by linear interpolation and extrapolation. Similar
methods were investigated in [11] and later in [12]. Based on its
fine-tuned shape model, this method can achieve high accuracy in
3Dreconstruction. However, underestimation is likely in rebuilding
3D models of small objects. Improvement was achieved by employ-
ing object deformation information derived from slice registration
[13,14]. Penney et al. applied non-rigid registration to derive pixel
association between a pair of sample images and used the associ-
ated pixels to estimate the missing values following linear interpo-
lation [13]. Frakes et al. developed similar idea but used a hybrid
motion estimation technique, i.e., control grid interpolation, to get
the displacement field. Cubic interpolation is then applied [14].

In this paper, we describe a novel wavelet-based fusion method
for 3D reconstruction and will address two important issues:

1. how to estimate unknown voxel values by combining comple-
mentary information from sparse, multi-planar MR images, and
2. how to improve reconstruction accuracy and preserve crucial
image features (e.g., object boundaries) in a volume composite.

The ensuing sections of this paper are organized as follows: Sec-
tion 2 presents our fusion-based 3D reconstruction algorithm. It
begins with a description of our bidirectional linear interpolation
method that estimates unknown values using information from
both sagittal and coronal MR images. Wavelets-based fusion is then
used to integrate features from interpolation results for recon-
struction. Section 3 demonstrates our method using 2D tongue
MR image, synthetic 3D phantom, and multi-planar, bidirectional
human tongue MR scans. Our method was compared with five other
interpolation methods. Section 4 concludes this paper with a sum-
mary and a brief discussion of our future work.

2. Methodology
2.1. 3D reconstruction via fusion

In MR imaging, slices are typically equally spaced and parallel
to each other. An illustration of the imaging planes and their corre-
spondence in the Cartesian coordinates is shown in Fig. 1(a). When
the slices of a sagittal image set are mapped into a 3D space, the
resolution in the Y-Z plane is the image resolution (or pixel size),
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whereas the resolution in the X direction is determined by the num-
ber of slices acquired (or slice thickness). Likewise, coronal images
have a high resolution in X-Z plane, but low resolution in the Y
direction.

Let I;(X;, y, z) and Ii(x, Yy, z) denote sagittal and coronal slices,
respectively. The capital letters indicate the dimensions that are
constant to the image plane. By assembling I; and Iy in a 3D space,
we obtain high resolution in the X, Y,and Z directions in the sampled
slices. These images are hereafter referred to as the fiducial slices,
and the pixels/voxels in the fiducial slices are fiducial pixels/voxels.

Let the slice space be A, A=|Xj:1 —Xj| or A=|ygq —yil. The
reassembled 3D volume based on A is re-sliced in the transverse
plane, as illustrated in Fig. 1(a) with the dashed lines. Each trans-
verse slice cuts through all the sample slices and is denoted with
Ii(x,y, Z;), which I is a 2D grid-like image and contains fiducial pix-
els from the intersecting image slices but the rest pixels are voids as
shown in Fig. 1(d). We assume that every voxel value is a function
of its neighboring fiducial pixels in the transverse image:

I(X,y,z)Zf(lj(Xj,y,Z[),Ik(X, Yk7zl))9 (1)

where x ¢ x; and y ¢ yj. Our task is, then, to estimate the 2D trans-
verse images I(x, y, Z;) using the fiducial pixels in I;(X;, y, Z;) and
Ir(x, Yg, Z;). The 3D volume is hence created by assembling all the
reconstructed transverse images.

Our method consists of two steps: (1) construction of transverse
images viainterpolation; and (2) a Wavelet-based Bidirectional Lin-
ear Fusion (WBLF) to integrate complementary information for an
improved 3D reconstruction. In the first step, we use our bidirec-
tional linear interpolation algorithm to estimate the values of the
unknown voxels based on fiducial pixels in the sagittal and the
coronal slices and construct a transverse image. Using the same
sagittal and coronal slices separately, we then generated two trans-
verse images with linear interpolation. In the second step, a wavelet
transform is used to decompose three transverse images into sub-
bands. A fused coefficient matrix is constructed by taking the most
significant coefficients according to their strength in directional
edges. The final reconstruction is achieved with an inverse wavelet
transform.

2.2. Bidirectional linear interpolation

We modified the conventional bilinear interpolation to com-
bine information from more than one source. As shown in Fig. 2, a
transversal image consists of fiducial pixels (in gray) and voids (in
white). To determine the value of Iy (i.e., target pixel), four pixels
are identified in the bounding fiducial slice that have the minimum
distance to the target pixel, i.e.,

Iy = {I;imin(D(lo, I;), VI € {I*, I})}, (2)

where D(-) denotes the Euclidean distance.

The four closest pixels are referred to as the fiducial neigh-
bors of Iy and are denoted by I,={I1, Iz, I3, I4}. Two pairs are
formed from the four neighbors, each of which consists of one pixel
from each bounding slice. Let Dy, Dq = D(I1, I) + D(I3, I4) and Dy,
Dy = D(Iy, I4) + D(I3, I3) denote two ways of pairing. Note that the
farther the two fiducial pixels are apart, the more uncertain the
interpolated value. Hence, our chosen pairing shall minimize the
sum of the distance between every two paired pixels:

D* = min(Dq, Dp), (3)

where D* is the total distance of the chosen pairing.
The value for Iy is computed as follows:
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Fig. 2. A 2D scenario of the bidirectional linear interpolation. Fiducial pixels are
shaded in gray and the voids are in white. Given the target pixel, Iy, four fiducial
pixels are identified as I1, I7, I, and I4.

where Dg_12 and Dg_34 are the distances of I to the line segments
of I1 I, and I3l4, respectively, and are proportional to the products
of the X and Y displacements:

D
Doz = Dozp%g, (5)
D
Do34 = 9042%2, (6)
and
Dz
iy =l +—22(h - ), (7)
Dia
Dz
g =g+ (I3 — Ig). (8)
D3y

An advantage of bidirectional interpolation is that the diagonal
features are mostly recovered. However, this method also suf-
fers from sparse fiducial slices. An example is illustrated in Fig. 3.
By removing evenly spaced 224 rows and 224 columns from a
256 x 256 image, we created a synthetic bidirectional sample,
as illustrated in Fig. 3(a). The zoom-in view in Fig. 3(c) reveals
the interpolation-induced discontinuity. The region enclosed by
box 1 depicts continuous reconstruction with a clear boundary,
whereas the interpolated region in box 2 exhibits artificial inten-
sity variations. This difference is the consequence of having a sparse
sampling space. The large difference makes it difficult to recover the
pixel intensity.

2.3. Wavelet-based fusion

The values of two adjacent pixels in an image are very similar
unless an edge exists. It is problematic, however, to recover missing
values when the sample is sparse, i.e., the slice thickness is great.
Fig. 4 shows a synthetic 2D image sampled in the X (horizontal)
direction. The ground truth, illustrated in Fig. 4(a), has an 8-bit
gray scale. The sampled fiducial pixels are shown in Fig. 4(b) as
shaded squares, and the rest are voids, i.e., values that need to be
estimated. Using linear interpolation, we construct an image using
fiducial pixels, as shown in Fig. 4(c). It is clear that the vertical edges
are successfully recovered. Similarly, if we sample in the Y (vertical)
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b

Fig. 3. Reconstruction using bidirectional linear interpolation. (a) The sample image. (b) The reconstructed image. (c) The zoom-in view of the boxed region in (b).

direction, continuous horizontal edges can also be recovered using
linear interpolation.

The image features recovered with linear interpolation are com-
plementary to those from bidirectional interpolation. To aggregate
image features, we developed a method to fuse the interpola-
tion results by combining the prominent wavelet coefficients for
improved 3D reconstruction.

The wavelet transformation of a function f(x) at scale 2/ is a
convolution of a filter function ¥ to signal f and is computed as
follows:

Woif (%) 2 wj(x) = f * Yi(x), 9)

where w;(x) denotes the wavelet coefficients at index x. A wavelet
function y¥(x) is expended by a dilation parameter 2/,

= (3)

By choosing ¢(x, y) to be a 2D differentiable function to satisfy
f xy®(x, ¥)=1 and ¢(x, ¥)|xy=0c =0, we have wavelets that consist
of two components in the horizontal and vertical directions as fol-
lows:

P y) = 2D, (10)
Py) = 2, (an

Extending Eq. (9) to 2D and replacing the wavelets with Egs.
(10) and (11), the dyadic wavelet transformation of a function f{x,
y) € [2(R?) can be written as follows:

P
W3S (x,y) =2 22 (f + 950)(%. ¥), (13)
WY S(x.3) = f + (2135;’) (x 9. (14)
WS(0,) =212 = 8 Y. (15)

The subband coefficients are partial derivatives of the convolu-
tion of image f with filter ¢. That is, each subband is equivalent
to an object edge map at various decomposition scales [15,16].
This transformation, therefore, resembles the Canny edge detec-
tor in that each subband consists of gradient values at a given scale
[15,17].

As shown in Section 2.2, interpolation using information from
different direction recovers complimentary image features. In a 2D
scenario, interpolation from rows recovers most vertical features;
interpolation from columns recovers most horizontal features; and
interpolation with our bidirectional linear method preserves diag-
onal features. This property matches that of wavelet subbands and
hence motivates our development of a fusion method. As shown in
Fig. 5, three interpolated images are generated using bidirectional
linear method (I}), interpolation with row fiducial pixels (Iz), and
interpolation with column fiducial pixels (I¢). By applying wavelet
decomposition, each interpolated image generates 4 subbands at
a given scale j, denoted with W3, W%’I?’, W;‘}’, and ¢,;, where W3
consists of vertical derivatives, W}y of horizontal derivatives, and
W;I?' of diagonal derivatives. Since Iz recovers mostly the vertical
image features and I¢ contains mostly the horizontal features, we
construct the fused subbands W;‘]?‘ by selecting the coefficient with
the greatest magnitude, i.e.,

00
X = j 2 ~
Wyf(X, y)=fx (2 X ) (x,), (12) Wg;c(x’y) _ WZ?(,Q(X’Y)’
a \i N b \g N c \\i N
N NS SSNERR SEN

Fig. 4. (a) Original image. The shaded squares are the sampled locations. (b) Sampled image. (c) Linear interpolation result.
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Fig. 5. Wavelet-based fusion. The block arrows represent wavelet transformations,
and the dashed lines represent the subband selection and merging process. Three
interpolation results are decomposed into subbands by using dyadic wavelet trans-
formation. Based on our fusion rules, subbands are selected and a merged wavelets
coefficient composite is obtained. The fusion result is synthesized with the inverse
wavelet transform.

where |W§;‘Q| = max(|W§)?‘Q|) and Qe{J, R}.
Similarly, for the fused subbands W), we select coefficients

from the decomposition of Ic and I; following the greatest mag-
nitude rule:

AYy —_ WYy
Wi (x,y) = W/ (%, ),

where |W§’}’Q| = max(|W§’qu|) and Qe{J, C}.
However, since only subbands from I; preserve diagonal image
features, W) carries the coefficients from the W of I}, i.e.,

Xy —_ WY
Wy (%, y) = W,/ (%, y).

The fusion of the three interpolations is achieved by aggregating
coefficients according to their maximum image feature. The fusion
rule is based on coefficient magnitude, because a greater coefficient
represents a stronger edge as follows:

$2(x.¥) = b31(x, ),

W3 (x,y) = W3, (x,y), W5
Wy (x, ) =Wy (% ¥). W3}
Wy (x, ) = Wy} (x.¥),

max(|WﬁQ|) and Q = {J, R},
max(|Wy/,1) and Q ={.C},

ol =

- (16)
o=

where W and ¢ denote a wavelet subband of the fused com-
posite. An inverse wavelet transform reconstructs the image from
fused wavelet subbands.

In the 3D scenario, we assemble coronal and sagittal slices
to form a 3D volumetric object with voids to be estimated. In a
transversal plane that cuts across the 3D model, coronal slices pro-
vide the horizontal fiducial pixels and sagittal slices provides the
vertical fiducial pixels. Hence, the reconstruction in 3D is converted
into reconstruction of transversal slices in 2D. Reassembling the
interpolated transversal slices gives the final 3D model.

Table 1
The RMSE of the 2D image reconstruction. S: sample spacing and MD: methods.

S MD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
WBLF 3.96 3.65 3.56 3.58 3.73 3.70 3.87 3.89 3.88 3.97 3.86 4.01 3.76 3.62 3.96
Gosh 4.44 4.26 4.18 4.24 4.44 4.36 4.61 4.62 4.71 4.81 4.69 4.89 4.56 4.39 4.72
RI 17.1 18.6 16.9 18.8 17.2 18.2 17.1 174 17.5 19.0 209 20.8 16.2 204 18.1

4 LI 28.4 26.9 259 25.9 271 25.9 27.4 27.9 28.5 28.6 28.1 29.0 28.2 28.2 30.5
CI 28.6 27.0 26.1 26.1 27.3 26.1 27.6 28.1 28.6 28.8 28.3 29.3 28.5 284 30.7
SI 28.7 27.1 26.2 26.2 274 26.2 27.7 28.2 28.8 29.0 28.5 294 28.6 28.6 30.9
WBLF 5.17 4.87 4.85 4.77 5.06 491 5.28 5.25 5.40 5.47 5.32 5.50 5.14 5.00 5.34
Gosh 6.01 5.71 5.62 5.57 5.94 5.76 6.08 6.11 6.37 6.42 6.25 6.52 6.10 6.04 6.42
RI 20.0 16.3 20.9 18.9 214 15.8 22.3 18.2 18.2 18.1 22.6 214 214 18.2 223

5 LI 30.5 28.8 28.0 27.9 29.1 27.9 294 30.0 30.6 30.8 30.3 31.1 30.3 30.5 33.0
CI 30.8 29.1 28.3 28.3 29.4 28.2 29.8 30.3 31.0 31.2 30.6 31.6 30.7 31.0 334
SI 31.0 29.2 284 28.4 29.6 283 29.9 30.5 31.1 314 30.8 31.7 30.8 31.1 33.6
WBLF 6.12 5.75 5.73 5.77 6.10 5.94 6.31 6.53 6.67 6.69 6.42 6.64 6.08 5.90 6.37
Gosh 7.14 6.71 6.65 6.70 7.12 6.95 7.36 7.60 7.81 7.78 7.44 7.83 7.23 7.06 7.48
RI 17.4 20.6 194 20.3 21.2 16.1 18.7 19.4 223 17.8 18.9 21.1 19.5 20.2 24.0

6 LI 30.1 28.4 27.5 27.6 28.8 27.5 29.0 29.6 30.3 30.4 29.8 30.7 29.8 29.9 322
Cl 30.4 28.7 27.7 27.8 29.1 27.8 29.3 29.9 30.6 30.7 30.1 31.1 30.1 30.2 325
SI 31.0 28.8 279 28.0 29.2 27.9 295 30.1 30.8 30.9 30.3 313 30.3 304 32.7
WBLF 7.37 6.82 6.72 6.63 6.86 6.72 7.19 7.48 7.66 7.81 7.63 7.69 7.36 7.27 7.48
Gosh 8.49 7.99 7.82 7.78 8.10 7.86 8.46 8.78 8.93 9.00 8.71 8.94 8.75 8.58 8.90
RI 22.0 214 20.6 20.2 199 214 17.2 17.5 20.7 20.6 211 179 21.0 22.4 20.1

7 LI 30.7 29.1 28.3 28.2 294 28.2 29.8 30.5 31.0 30.9 30.3 31.1 30.5 30.3 33.1
Cl 31.1 29.4 28.7 28.5 29.8 28.6 30.2 30.8 314 31.3 30.7 31.5 309 30.7 335
SI 313 29.6 28.8 28.7 30.0 28.8 304 31.0 31.6 315 30.8 31.7 31.1 30.9 33.7
WBLF 8.23 7.66 7.52 7.47 7.81 7.68 8.21 8.37 8.63 8.59 8.34 8.59 8.16 7.84 8.35
Gosh 9.33 8.76 8.57 8.51 8.97 8.77 9.40 9.50 9.75 9.82 9.49 9.83 9.40 9.20 9.74
RI 211 20.6 18.9 21.0 21.6 16.2 16.8 19.6 233 222 20.9 18.5 22.8 229 23.7

8 LI 30.7 28.8 28.0 28.1 29.3 28.1 29.7 303 31.1 31.0 304 31.1 30.1 30.2 32.6
Cl 31.0 29.1 28.3 28.4 29.6 28.4 30.0 30.6 315 314 30.8 315 30.4 30.6 32.9
SI 31.2 29.3 28.5 28.7 29.9 28.6 30.2 309 31.8 31.6 31.1 31.7 30.7 30.8 33.2
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3. Experimental results and discussion

For the performance evaluation, we applied our method to 2D
MR images and synthetic 3D phantoms. Because our method recon-
structs the image of a 3D volume by fusing fiducial pixels to form
contiguous 2D transverse images, experiments with 2D images are
close simulations of the 3D scenarios and permit evaluation of
reconstruction accuracy. In the experiments with 3D phantoms,
we segmented the reconstructed 3D images and compared the
estimated volume against the ground truth. In these experiments,
we compared our method (WBLF) with the conventional linear
interpolation (LI), cubic interpolation (CI), spline interpolation (SI),
the fusion method (Gosh) by Goshtasby and Turner [9] and the
registration-based interpolation method (RI) by Penney et al. [13].
Last, we applied our method to the multi-planar, bidirectional MR
scans of the human tongue.

3.1. Performance analysis
3.1.1. 2D image experiments

Our experimental 2D image set consists of 15 contiguous sagittal
MR slices. Prior to the reconstruction, a histogram stretching was

wWELF
@Gosh
aRl
slinear
aCubic
oSpling

Root Mean Square Error

Sampling Spacing

Fig. 6. Average RMSE given various sampling spaces.

used to map the original images from 16-bit gray scale to 8-bit. The
rescaled images were used as our references.

Given a sampling space A, a row-sample image was generated
by extracting every Ath row in the reference image. For example,

Fig. 7. 2D image reconstruction at sampling space 4. (a) Original image. (b) WBLF reconstruction result. (c) Distance-weighted fusion result. (d) Linear interpolation using
row samples. (e) Cubic interpolation using row samples. (f) Spline interpolation using row samples. (g) Linear interpolation using column samples. (h) Cubic interpolation
using column samples. (i) Spline interpolation using column samples.



X. Yuan, X. Yuan / Computerized Medical Imaging and Graphics 35 (2011) 373-382 379

Fig. 8. 2D image reconstruction at sampling space 8. (a) Original image. (b) WBLF reconstruction result. (c) Distance-weighted fusion result. (d) Linear interpolation using
row samples. (e) Cubic interpolation using row samples. (f) Spline interpolation using row samples. (g) Linear interpolation using column samples. (h) Cubic interpolation

using column samples. (i) Spline interpolation using column samples.

for a 256 x 256 image with a sampling space of 8, a row-sample
image is a 32 x 256 matrix that consists of rows {8, 16, 24, .. ., 256}
from the reference image. Similarly column-sample images were
created.

We used the root mean square error (RMSE) with respect to the
reference images as a metric for reconstruction accuracy.

where I and I denote the reconstructed and the reference images,
respectively, and N is the total number of pixels.

Table 1 lists the RMSE of the methods at sampling spaces 4,
5, 6, 7, and 8. Fifteen experiments (in columns) were conducted
and each row shows the RMSE of a method at a given sam-
pling space. The reconstruction error increases as the sampling
space increases. The mean row-sample-based and column-sample-
based reconstruction RMSE values for the linear, cubic and spline
interpolations were very close because the interpolation was uni-

directional (i.e., performed in one dimension). The reconstruction
error of these methods is the greatest. Registration-based inter-
polation (RI) resulted in smaller errors than the conventional
interpolation methods. However, its results are sensitive to the reg-
istration accuracy and depict greater variance (as shown in Fig. 6).
It is evident that fusion-based methods (Gosh and WBLF) are able
to achieve a more precise reconstruction by integrating samples
of two directions and our WBLF method (WBLF) consistently pro-
duced the smallest RMSE values. This result is further demonstrated
in Fig. 6, which illustrates the average RMSE values of the five
reconstruction methods as a function of sampling space. A two-way
ANOVA (a=0.05) revealed significant improvement of our method
in all sampling spaces (p<0.0001 in each case). The Bonferroni
post-tests revealed that our method had significantly lower RMSE
scores at any sampling spacing than the conventional interpola-
tion methods. It is clear that our method resulted in the smallest
reconstruction errors in 2D scenario.

Figs. 7 and 8 illustrate the 2D reconstructed images at sam-
pling spaces 4 and 8. The row-sample interpolation, (d)-(f) in
Figs. 7 and 8, and column-sample interpolation, (g)-(i), preserved
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Fig. 9. 3D phantoms used in our experiments.

vertical and horizontal details, respectively. In both cases, our
method produced the most visually favorable reconstructions with
elimination of local discontinuities, as shown in Fig. 7(b) and 8(b)
in comparison to Fig. 3(¢c). The reconstructed images in Figs. 7 and 8
using LI, CI, and SI methods depict much difference; whereas the
quantitative differences of the average RMSE error between sam-
pling spaces 4 and 8 are 2.19, 2.34, and 2.45 for LI, CI, and SI,
respectively. The statistics are computed by combining the errors of
reconstructions using row samples and column samples, and repre-
sent a summary of 15 cases. Comparing against their average error
magnitudes, which are 27.77,27.96, and 28.08 at space 4 and 29.96,
30.3, and 30.53 at space 8 for LI, CI, and SI, respectively, the visual
and quantitative results agree.

3.1.2. 3D volume estimation

We adopted the phantom generation approach used in [9] and
created 3D phantoms that have distinct surfaces. Voxels within
the phantoms have an intensity value of 200, whereas voxels
outside the phantoms have values of 100. The 3D matrix size is
128 x 128 x 128. Five phantoms were created, including a digitized
human tongue model, as illustrated in Fig. 9. These phantoms rep-
resent a variety of objects of different geometric characteristics.

Segmentation of the object was based on thresholding. The
threshold was determined by choosing the medium value in the
histogram of the reconstructed volume.! In our experiments, the
value 150 was used as threshold.

We compared our WBLF method with the distance-weighted
fusion method, registration-based interpolation, and linear and
cubic interpolations. In addition, we performed volume estimation
based on segmentation of 2D slices. That is, the 3D volume was
approximated with the product of the area of the segmented 2D
objects and the sampling space. For each method, we calculated
the reconstructed volume error ratio (VER) based on the estimated
volume, V'; and the true phantom volume, V:

(17)

Table 2 presents the error ratios at various sampling spaces with
the best performance highlighted with bold face font. The vol-
ume is presented with the total number of voxels and listed in
the second column. When the slice spacing was small, the meth-
ods achieve small VER values in volume estimation. Out of 25
experimental sets, our WBLF-based reconstruction resulted in best
performances in 18 cases. When the object is in simple, regular
shape, registration-based reconstruction method produced supe-
rior model (see phantom 2 for an example), had the smallest VER
values. For phantoms 2, 3, and 4, the VER of WBLF at sampling space
8 was smaller than that of the other methods at sampling space 4.
Statistical analysis (o =0.05) revealed a significant improvement in
3D reconstruction using our method (p <0.0001).

In the experiments with phantom 2, both registration-based
interpolation and the 2D segmentation produced exceptional bet-

1 Due to interpolation, the voxel values span in a range.

ter results. Asshownin Fig. 9, phantom 2 is an ellipsoid with gradual
change of its surface. Such a property favors registration-based
interpolation method. However, WBLF-based method produced
very competitive accuracy in volume estimation. Both registration-
based interpolation and the 2D segmentation-based method
encountered enormous difficulties when the object’s shape was
irregular or when the shape of the cross section changed sharply,
for instance, phantom 4 and 5 in Fig. 9. In contrast, our method
constantly achieved superior precision.

Fig. 10 illustrates the average volume estimation error ratios
of the phantoms by sampling space as a function of reconstruc-
tion method. Our WBLF method had the smallest mean VER values
and standard deviations in all cases and significantly better perfor-
mance than the 2D method when sampling space is large, i.e. at 7 or
8, based on the Bonferroni post-tests. Note that VER values for the
2D segmentation-based method increased significantly with the
increase in sampling space, and that the variances were the great-
est. No significant difference was found between the bilinear and
the bicubic interpolation methods, although the latter had a slight
advantage at a larger sampling space. In contrast to WBLF-based
method, registration-based interpolation is impacted by the regis-
tration error and depicted greater variance as the sampling spacing
increases.

3.2. 3D reconstruction of the human tongue

Our in vivo human MR images were acquired in a GE Excite 3T
scanner using a fast spin-echo pulse sequence and the following
parameters: TR=1916ms, TE =9.2 ms, 4mm slice thickness, zero
slice spacing, 240 x 240 mm field of view (FOV), and 0.8 phase FOV.
Fifteen sagittal slices and nineteen coronal slices were acquired for
every subject. They were assembled in a 3D cube based on the phys-
ical slice locations recorded in the image header files. To achieve
isometric 3D reconstruction, we needed to recover 8 slices between
every two fiducial slices.
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Fig. 10. The volume error ratio. Vertical bars denote the variance.
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Table 2
The volume error ratio using different reconstruction methods. The volume is measured in the number of voxels. Pha: phantom. SS: sampling space.
Pha. Voxel Ss WBLF Gosh RI Ll cl 2D
1 178,122 4 0.0051 0.0017 0.0073 0.0081 0.0076 0.0260
5 0.0024 0.0058 0.0152 0.0386 0.0386 0.0250
6 0.0059 0.0042 0.0268 0.0593 0.0591 0.0600
7 0.0040 0.0093 0.0271 0.0692 0.0693 0.0570
8 0.0091 0.0130 0.0235 0.0421 0.0426 0.0710
2 205,093 4 0.0006 0.0085 0.0039 0.0247 0.0240 0.0070
5 0.0049 0.0060 0.0043 0.0493 0.0490 0.0140
6 0.0136 0.0109 0.0092 0.0721 0.0721 0.0090
7 0.0158 0.0142 0.0120 0.0893 0.0893 0.0120
8 0.0026 0.0105 0.0054 0.0441 0.0405 0.0410
3 112,876 4 0.0002 0.0149 0.0057 0.0657 0.1370 0.1890
5 0.0028 0.0157 0.0066 0.0485 0.0546 0.1620
6 0.0132 0.0176 0.0106 0.0829 0.0578 0.3280
7 0.0106 0.0201 0.0114 0.1138 0.0907 0.3970
8 0.0018 0.0155 0.0156 0.1050 0.0750 0.4700
4 342,055 4 0.0006 0.0079 0.0092 0.0230 0.0149 0.0200
5 0.0048 0.0060 0.0195 0.0659 0.0580 0.0250
6 0.0125 0.0116 0.0388 0.0896 0.0849 0.0910
7 0.0124 0.0167 0.0323 0.0696 0.0589 0.0800
8 0.0006 0.0085 0.0367 0.0907 0.0781 0.1090
5 624,527 4 0.0001 0.0051 0.0182 0.0420 0.0419 0.0183
5 0.0015 0.0057 0.0219 0.0513 0.0493 0.0227
6 0.0016 0.0059 0.0250 0.0594 0.0571 0.0292
7 0.0015 0.0037 0.0251 0.0596 0.0589 0.0345
8 0.0019 0.0064 0.0341 0.0800 0.0759 0.0541
Fig. 11 illustrates the re-sliced transverse slices of a repre- of the conventional linear interpolation method without fusion,

sentative volumetric reconstruction. The top two rows are the applied to the same original images with the same slice locations.
reconstructed images using our method in a zoomed view of Clearly, by fusing bidirectional MR slices, the tongue boundary is
the tongue. In contrast, the bottom two rows show the results greatly improved and the staircase artifact is eliminated. In addi-
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Fig. 11. Re-sliced transverse images of the reconstructed 3D tongue. The top two rows are the results of fusion. The bottom two rows are the results produced with
conventional linear interpolation.
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tion, the tongue body appears more homogeneous, which can
potentially aid segmentation for more accurate delineation of the
object.

4. Conclusions

In this paper, we present a wavelet-based fusion method to
integrate multi-planar MR images and improve the accuracy of
3D reconstruction. Our method consists of an interpolation step
followed by a wavelet-based fusion. First, we use our bidirec-
tional linear interpolation algorithm to estimate the values of the
unknown voxels based on fiducial pixels in the sagittal and the
coronal slices and construct a transverse image. Using the same
sagittal and coronal slices separately, we then generated two trans-
verse images with linear interpolation. In the second step, a wavelet
transform is used to decompose three transverse images into sub-
bands. A fused coefficient matrix is constructed by taking the most
significant coefficients. The final reconstruction is achieved with an
inverse wavelet transform.

Experiments were conducted using 2D images and 3D
phantoms. Our experimental results demonstrated that our
fusion-based reconstruction method resulted in the smallest recon-
struction error consistently in both 2D and 3D scenarios. In 3D
volume estimation, both registration-based interpolation method
and segmentation-based method performed well with regular-
shaped objects. However, our method resulted in competitive
performance and achieved the best results with other complicated
objects. Further, by preserving crucial object edges without com-
promising the local spatial continuity, our wavelet-based fusion
method successfully suppressed interpolation artifacts and pro-
duced improved 3D images.

The complexity of our algorithm for 3D reconstruction is
0o(n3 — ((21 — 1)/A2)n2), where A is the sampling space and n is the
dimension of the reconstructed 3D image.

The advantage of our method casts new light on MR imag-
ing and image processing, as it is especially useful when high
resolution and short acquisition time cannot be achieved simul-
taneously. We believe that accurate isotropic reconstruction can
improve image segmentation performance. Our future work will
focus on minimization of reconstruction errors induced by image
noise and misregistration and the development of 3D segmentation
algorithms using the fused 3D volume images.
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