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Abstract—Tagline detection and indexing are challenging tasks
due to complicated anatomical properties and imaging noise. In this
paper, we will address the following two important issues in tagline
detection: 1) an automatic method independent from imaging ap-
proaches with improved robustness and accuracy and 2) tagline
indexing that matches taglines in task and reference images for
postprocessing. Our method consists of two steps: First, a wavelet
decomposition is performed on a tagged magnetic resonance (tVIR)
image. Subband correlation is used to dampen anatomical bound-
aries but enhance taglines. A tagline map is created by segmenting
a reconstructed image using pseudowavelet reconstruction. Next,
tagline pixels are grouped into clusters and isolated small line seg-
ments are eliminated. A snake method is then used to index and
recover broken taglines. Our method has been validated with 320
tMR tongue images. Measurement of tagline accuracy was per-
formed by computing tag pixel displacement. Without assumptions
on tagline models, it detects taglines automatically. Comparison
studies were conducted against the harmonic phase method. Our
experiments resulted in a p-value of 1E-6 with one-way ANOVA,
which indicates a significant improvement in accuracy and
robustness.

Index Terms—Active contour, image segmentation, magnetic
resonance imaging, multiresolution, tagline.

1. INTRODUCTION

AGGED magnetic resonance (tMR) imaging was devel-
T oped for in vivo studies. It inserts magnetic taglines that
essentially create signal voids in tissue using spatially selective
presaturation pulses. These taglines appear as dark grids in the
image and move with the tissue in motion. It provides a nonin-
vasive means for studying dynamic physiological deformation
within tissues. Because the scanned subject can hardly remain
still, motion distortions and intrinsic myo-structure interference
cause problems in tagline extraction [1].

Several methods were developed for detecting taglines, which
attempted to tackle the problem from both the spatial and fre-
quency aspects. Chen and Amini [2] used Markov random fields
and maximum a posteriori (MAP) estimation, which used man-
ually deployed solid for initial tagline and proceeds to ones
with more knots and higher order for smoothness. Deng and
Denney [3], [4] described a tagline detection method based on
maximum likelihood (ML) and MAP hypothesis testing. It used
the image intensity model of a tagline and the initial tagline can-
didates were estimated across a region-of-interest using a snake

Manuscript received November 13, 2007; revised March 26, 2008. First pub-
lished February 2, 2010; current version published March 17, 2010.

X. Yuan and B. P. Buckles are with the Department of Computer Science and
Engineering, University of North Texas, Deuton, TX 76207 USA.

J. Zhang is with the Department of Computer Science, Texas Woman’s Uni-
versity, Denton, TX 76204 USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITB.2010.2040114

algorithm. Several approaches based on snake method [5], [6]
were proposed for tagline tracing [7]-[9]. The heuristic applied
was the intensity and spatial discontinuity. In [10], Guttman
et al. proposed a snake-based algorithm and used a high-pass
filtered version of the original image. A threshold was used to
determine which snake points were parts of a tagline and the
spatial continuity constraints were only applied to these points.

Alternatively, frequency-based methods use the tMR imag-
ing property for improved robustness and performance. Osman
et al. [11], [12] developed a method using harmonic phase
(HARP) image. The taglines were reconstructed from band-pass
Fourier phase coefficients. Qian et al. [13], [14] implemented a
tagline segmentation method based on Gabor filter bank. Gabor
filters (i.e., Gaussian modulated sinusoid signal) were selected
based on prior knowledge such that the first harmonic peak in the
frequency domain is extracted. In both methods, filter size has a
significant impact on the tagline detection results (a discussion
on this is provided in Section II).

Despite the progress made, there is much room for improve-
ment. Thermal noise and image artifacts can cause ambiguities
in detecting taglines. The previous methods often rely on em-
pirically chosen coefficients in presumed models. For example,
tagline spacing is a factor that needs to be adjusted for images ac-
quired with different tagged imaging protocols. Additional diffi-
culties arise from the subject variation in the task performance.
Intrasubject task response variation leads to faded taglines,'
and the presence of different tissues, fluid, and air degrades
taglines. The maximum muscle contraction causes greatly de-
formed taglines, which could result in tagline-tracing failure.

In this paper, we will address the following two issues in
tagline detection.

1) An automatic method that is independent from imaging

approaches with improved robustness and accuracy.

2) Tagline indexing that matches taglines in task and refer-

ence images for postprocessing.

Our method consists of two steps: First, a wavelet decom-
position is performed on a tMR image. Subband correlation is
used to dampen anatomical boundaries but enhance taglines.
A tagline map is created by segmenting a reconstructed image
using pseudo wavelet reconstruction. Next, tagline pixels are
grouped into clusters and isolated small line segments are elim-
inated. A snake method is then used to index and recover broken
taglines.

The remainder of this paper is organized as follows: Section II
reviews tagged MR image acquisition and its frequency prop-
erties. Section III describes our method in two sections: tagline

'In our studies, tongue press is cued by vocal guidance. Response time of
subjects to the vocal cue varies, which causes imaging pulses to mismatch
tongue press and results in faded taglines.
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Fig. 1. (a) k-space image. (b) and (c) Tagline detection with bandpass filter at
asize of 9 x 9 and 41 x 41, respectively.

segmentation and tagline recovery and indexing. Section IV
presents the experiments and analysis using tagged MR images
of the tongue. Section V concludes this paper with suggestions
for future development.

II. FREQUENCY CHARACTERISTICS

In tMR imaging, the pulse sequence uses excitation to produce
saturated parallel planes throughout the entire imaging volume
within a few milliseconds. The image acquisition is performed
in a perpendicular plan immediately following the saturation
process. A matrix of scanned region, namely k-space image, is
then acquired by changing the frequency and phase of the pulse
sequence, which essentially consist of Fourier coefficients. The
tagline patterns are found to be the spectral peaks in the k-space
image, as shown in Fig. 1(a). (Note: the bright spots lined up
vertically in the center of the space indicate horizontal taglines.)

Using bandpass filters, taglines can be detected. The
choice of the filters, however, is a major factor for accuracy
[12]-[14]. Fig. 1(b) and (c) illustrates tagline results produced
with the HARP method. Small filters miss the curving taglines
[see Fig. 1(b)] due to the lack of frequency components. Large
filters invite interference from nearby spectrum peaks. The
taglines close to anatomical boundaries are discontinuous [see
Fig. 1(c)]. Empirical methods are usually used to select the best
bandpass filters.

[II. METHODOLOGY
A. Tagline Segmentation

The wavelet transform of a function f(z) at scale 2/, denoted
by Wy, f, is achieved using convolution with wavelet functions

Wai f(x) = wj(x) = f(x)a () (D

where w;(x) is a wavelet coefficient at = and ¢(x) is a
wavelet function. A series of wavelet functions at different
scales can be created by dilation using a scale factor 27:
Py () = 1/2 (P(2/27)).

The reconstruction of f(x) is achieved via convolution of
wj () with a conjugate function x(z) as follows:

+o00

> wj(@)xe (@). 2)

j=—00

flz) =

The Fourier transforms of i) and Y, denoted by 1/; and ¥,

respectively, satisfy > > D2 w) (2 w) =1.

When applied to an image, the decomposition and reconstruc-
tion are performed using discrete scales in an hierarchical filter-
ing scheme. A smoothing function is then used. The wavelets
are chosen to be separable products of 1-D functions, applied
to images sequentially on rows and columns to generate four
subbands at each decomposition scale [15], [16].

The results of a wavelet-transform-resemble edge detection in
that each subband consists of gradient values at different scales.
Let ¢(x, y) denote a 2-D differentiable smoothing function. The
wavelet function ) consists of a horizontal and a vertical compo-
nent: " (2, y) = 0¢(z,y)/0x and ¥¥ (2, y) = 0¢(z,y)/dy. It
is shown that the coefficients are the results of the partial deriva-
tive of the convolution of image I with filter ¢. This property
has been employed to extract object boundaries with coefficient
manipulation and reconstruction [15], [17], [18].

Fig. 2 illustrates the wavelet decomposition of a tMR image
with horizontal taglines. Fig. 2(a) shows the low-pass subband
(a smoothed image with ¢) and Fig. 2(b)—(g) shows the gradient
subbands. Subbands shown in Fig. 2(b) and (e) depict the tagline
features; whereas subbands shown in Fig. 2(c), (d), (f), and (g)
contain mostly boundaries of the anatomical structures.

Directional characteristics of wavelet coefficients is the re-
sult of applying gradient filters. Hence, a wavelet reconstruc-
tion from a set of subbands that contains only the horizontal
(or vertical) components enhances the horizontal (or vertical)
taglines. In addition, intrascale correlations reveal features that
are present across subbands [19], [20]. In our case, such common
features encode anatomical boundaries such as cranial outline
and spine. By scaling with subband correlation, we can dampen
those coefficients that account for the anatomical structure, and
hence reduce false tagline detection.

In our algorithm, we use the distance among subbands to
describe the subband correlation. The coefficient distance d is
computed between two normalized subbands p and ¢, respec-
tively, in the same decomposition scale

dIMI(x,y) = |w§)($,y) —QI);I(.’L‘,yM (3)
where @; = |w;|/max;|w;]|.

Let { H, V, D} denote the subband feature direction: horizon-
tal, vertical, and diagonal, respectively, and A, » € {H,V, D},
is the tagline direction. The weights to the tagline subband is
computed as follows:

_ da.p + d)MA + d)»,B @
N 3

where A and B denote the other two subbands with few tagline
features. The small values in d imply anatomical boundaries and
stationary regions.

Assume we have horizontal taglines, i.e., A = H.Intherecon-
struction, wavelet subbands that contain vertical and diagonal
features are replaced with zero matrices. The low-pass subband
is substituted with a scaled unity matrix {/; whereas the scale is
the mean value of the image. The pseudowavelet reconstruction
(PWR) is formulated as follows:

o

J
I'=U+ > (aWh e 5)

Jj=1
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Fig. 2.
decomposition scale.

Let the tagline map produced by PWR be denoted as I'.
We used Otsu’s thresholding method [21] to segment taglines.
Assume the pixel value in an image is quantized into L bins. The
total number of pixels N = Zle n; is the sum of the number
of pixel n; in every bin 7. Hence, the probability of bin ¢ is
computed as p; = n; /N and ZZ—L:I p; = 1,and p; > 0.

Assume a threshold 7 is selected to segment taglines. That
is, tagline segments consist of pixels with values in the range
[1,2,...,7] and the background pixels fall in the range of [ +
1,7+ 2,..., L]. The optimal 7 is achieved by maximizing the
separability criterion

o2
T = arg max —129 (6)
T O'T
where 0% is the between-class variance and o2 is the image
variance

heyn 3 (T

=1 j=7+1

- 2
Z Iy )
=1 ZTLL=T+ 1Pn

(7

L L :
= Z i—ijj Di- ®)
i=1 j=1

Since the overall variance is functionally independent of 7,
an optimal threshold is determined by maximizing the between-
class variance

T = arg max 0'23. )

B. Tagline Recovery and Indexing

The segmentation results from our previous step give stripe
patterns. However, broken taglines and erroneous line segments
shall be corrected for tissue motion analysis. For the ease of
description, we assume horizontal taglines in the rest of this
section.

1) Pixel Clustering and Noise Removal: Let q(x,y) denote a
pixel of a tagline in a binary tagline map (). Assume that tagline

® ®

Wavelet decomposition of a tMR image. (a) Low-pass subband. (b)—(d) Subbands on the second decomposition scale. (e)—(g) Subbands on the first
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Fig. 3. Projected histogram of tagline.

pixels in () have a value of 1. By finding the nearest neighbors
and tracing along taglines, we group tagline pixels into clusters.
Pixels in a cluster are assigned a new value k. Each pixel in a
cluster has at least one neighbor such that the distance is less
than a threshold T'

C(k) ={q(z,y) = k,3q(a",y") € C(k)

and || q(2',y)q(x,y) |< T} (10)

where || - || denote the Euclidean distance. By counting the
number of tagline pixels in every row, we create a projected
histogram. An example is shown in Fig. 3. Each peak in the
histogram represents a group of connected tagline pixels. Two
properties are computed from the projected histogram: cluster
distance Dy, ,, = |C(m) — C(n)|, where C(m) and C(n) ar

the means of clusters C'(m) and C'(n) and cluster size S. W1th
the projected histogram, we first check for broken taglines. Note
that because of tagline deformation, peaks in the histogram are
mostly skewed and there are overlaps between adjacent peaks.
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Fig. 4.
snake. (b)—(i) Images showing intermediate steps.

Our method examines every pair of clusters C'(n) and C'(n — 1)
and combines them if they satisfy the following criteria.

1) The distance of C'(n) to an adjacent cluster is less than a

threshold D*, i.e., D,, ,+1 < D™

2) The distance of C'(n) to the closest pixel in one adjacent

cluster is less than that in the other adjacent cluster, i.e.,

D71,,77,+1 < Dn—l,n,~

A new label is assigned to the pixels in a combined cluster.
This process repeats until no more clusters can be combined.
After regrouping, S is updated. Clusters with small S are con-
sidered as noise and eliminated.

2) Recovery and Indexing: Our tagline recovery and index-
ing method is derived from the snake model [5], [6], [22]-[24].
However, the snake in our method represents an open contour.
Each control point is imposed by elastic forces from neighbors
and an external force. The speed is zero at tagline pixels and is
one at all other locations. The energy function is an aggregation
of external and internal forces as follows:

E(s) = Eext + Eint(s,s — 1) + Fin (s, s + 1) (11)
where E, is an external force that is enforced equally every-
where in the image and has a constant direction. Eip;(s,s — 1)
and Fi,(s,s + 1) are the internal forces that simulates elastic
force and formulate as follows:

B (s, 8') = sgn(f(s") — f(s)A =16

[f(s) = f(s)l < ¢ (12)
where f(s) gives the coordinates of the control point s, and
sgn(f(s") — f(s)) is the sign function that calculates the force
direction. We constrain this force to be within the immediate
neighbors. It is worth noting that the force direction depends on
the relative location of the two points involved.

Fig. 4 illustrates snapshots of the evolution of a snake. At
initialization, Fig. 4(a), control points are at the same altitude.
An iteration is defined by moving all control points until balance
is reached. In the next iteration, we reinitialize all the control
points by increasing their location by one unit, as shown in
Fig. 4(g). Control points are relocated into nontag region so that
external forces take over the movement.

Evolution of a snake in an experimental run. Taglines are shown in black. The red circles denote the control points on the snake. (a) Initialization of the

Erroneous indexing arises at inconsistent line length, e.g.,
when the top lines are shorter than the lines underneath and the
snake lands on more than one tagline. To correct it, we verify
the current index with the original label assigned by (11) and
the primary index is given to the first group label seen by the
snake. Other labels are considered inconsistent. Once the snake
becomes stable, all the control points with inconsistent labels
will be withdrawn by one unit. The correction is repeated for
those points until their label becomes the primary index.

Due to quantization error, the total force on a control point
could be nonzero and causes the control point moves back and
forth infinitely. To address this issue, we gradually reduce the
energy exponentially

E'(s)=E(s)(e™" = 1) (13)

where ¢ denotes the time. Allowing enough time, the energy of
a control point vanishes.

IV. EXPERIMENTS AND EVALUATION

A. Image Acquisition and Preprocessing

In our studies, a 2-D slice was acquired with 1-D SPAMM
[25] planar tagging for each task response. A modified real-
time TrueFISP pulse sequence was used with parameters:
26x 20 cm field of view (FOV), 6 mm slice thickness, 60°
flip angle, 256 frequency resolution, 50% phase resolution with
3/4 partial Fourier acquisition, 977 Hz per pixel bandwidth,
3.55ms TR and 1.78 ms TE. The pixel size was 1.09375 mm x
1.09375 mm. We acquired three sets of images for every sub-
ject. Each set consists of nine images. We used images from six
human subjects in our experiments. Before tagline detection,
images were quantized to 8-bit grayscale and their histograms
were stretched linearly to the 8-bit range.

B. Wavelet Decomposition Scale Analysis

In wavelet decomposition, the number of decomposition
scales specifies the extent coarse features are analyzed. When a
coarse scale is used, wide stripe features are extracted. This is
analogous to using large filters used in the HARP method and
Gabor-filter-based method. To study the impact of decomposi-
tion scale to tagline detection results, we applied our method to
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Fig. 5. Mean normalized pixel displacement with respect to decomposition
scales.
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20 randomly selected images and evaluated the tagline detected
using decomposition scales 2 through 7.

We measured the consistency using a normalized pixel dis-
placement &, as follows:

Uty —t, Nt
B t, Uty

£ (14)

where t, Ut, is the union of two binary tagline images and
t, Nt, is the intersection of these two images. The tagline pix-
els bear a value of 1; the background pixels bear a value of 0.
Fig. 5 illustrates the average £. The variation between two ad-
jacent decomposition scales is mostly smaller when compared
to that of the nonadjacent scales (The nonadjacent scale varia-
tions are plotted in Fig. 6.) However, the difference is minimal
in general—less than 5% in the majority of cases. Hence, the
variance induced by decomposition scale is negligible in our
method.

Examples of tagline detected using different decomposition
scales are illustrated in Fig. 7. It is shown that the detected
taglines closely resemble one another. In the rest of our experi-
ments, we used the decomposition scale of 4 in wavelet analysis.

C. Performance Evaluation

In performance evaluation, we randomly selected six sets of
images and hand-traced the taglines. The hand-tracing results
were cross validated by three individuals and then merged as
reference. Due to the size of the human tongue, the number of
taglines in each case differs. In our comparison study, we cate-

gorized taglines into two groups based on their curvature: slow
changing taglines (SCT) and highly curving taglines (HCT).

Fig. 8 illustrates our results. There are seven to nine taglines
in each image. The left panel in each example shows the orig-
inal images and the right panel shows the detected taglines (in
red) superimposed on the original images. Due to muscle con-
tractions, some taglines depict an almost 90° deformation [see
Fig. 8(a)].

To quantify tagline estimation errors, we calculated the pixel
displacement P of the detected results against the reference
taglines. Let [” and [’ denote a reference tagline and a detected
tagline, respectively. r; and ¢; are the corresponding pixels on
each line. The tagline pixel displacement is the cumulative dis-
tance of all the corresponding pixels on {" and [!

q
P11 = |t —il. (15)
i=1

For comparison, we implemented the HARP method [11].
We chose the filter size to be the distance between two adjacent
spectrum peaks. The maximum gradient points in the recon-
structed phase images were extracted and eroded with the same
algorithm used in our method to reduce the tagline width to 1
pixel.

Table I shows the mean and the standard deviation (STD) of
pixel displacement produced by our method and the HARP
method. For slow changing taglines, both methods resulted
in relative small errors. However, our algorithm demonstrated
much less error when taglines exhibit larger curvature. In con-
trast, the mean error of the HARP method increased by 92% and
STD increased by 79%, respectively. Using one-way ANOVA
and means testing, we analyzed the performance of both meth-
ods. The results from both methods are balanced around their
means (9.7 and 19.2 for our method and the HARP method,
respectively). The means confidence interval is (5, 12) for our
method and the confidence interval is (10, 25) for the HARP
method. The confidence interval of our method is much smaller
than that of the HARP method and there is little overlap between
these confidence intervals. The p-value is 1E-6, which implies
a significant improvement in accuracy and robustness.

Table II lists the pixel displacement for the images in Fig. 8.
Taglines are numbered from top to bottom, and the taglines
outside the human tongue region, showing no irrelevant tissue
deformation, were not considered. By matching measurements
in Table II with images, we can see that our method performed
slightly better than the HARP method on average. However,
the improvement becomes significant for highly curved lines
and blurry lines. The HARP method resulted in P = 35 for
an almost 90° curved tagline [line 9 in Fig. 8(a)], whereas our
method resulted in P = 11. The blurry taglines also caused the
HARP method to exhibit greater errors as shown in Fig. 8(c). For
lines 7 and 8, our method resulted in P = 15 and 9, respectively;
whereas HARP resulted in P = 37 and 52, respectively.

Fig. 9(a) and (d) illustrates the cropped tagged MR images in
the region of tongue, which show taglines with great curvature
and blurry taglines. Fig. 9(c) and (f) shows the results of the
HARP method. Broken taglines are primarily due to the limit in
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Fig. 8. Examples shows detected taglines superimposed on the original images. (a)—(c) Coronal images. (d)—(f) Sagittal images.
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line 9 11 Fig.9. Zoomed-in view of tagline results. (a) and (d) Original images. (b) and
TIARP Method (e) Results of our method. (¢) and (f) Results of the HARP method.
line 1 9 8 8 11 18 25
:igz § 160 g ig ;g ;g 32 V. SUMMARY AND CONCLUSION
line 4 9 12 19 19 36 20 : : : :
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line 6 23 17 17 28 15 36 and indexing method. The indexing step is an intrinsic process
line 7 20 21 37 11 10 6 for tagline recovery. Our method is rooted in frequency analysis
:ig: g gg 19 32 of the tMR images, and incorporates a snake method for tagline

recovery and indexing.
Our method has been validated with 320 tMR tongue im-

spectral components recovered in the phase image after filtering.
The erroneous tagline in Fig. 9(f) is very hard to correct because
of the overlap. In practice, manual correction usually follows.
The taglines illustrated in Fig. 9(b) and (e) are results of our
method, which are very satisfactory.

ages from six human subjects. The results were compared with
taglines detected using the HARP method and with manu-
ally traced references. The experiments demonstrated that our
method produced taglines with greatly improved accuracy and
robustness.
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Further improvement includes an interpolation method that
provides higher order smoothness, such as B-Splines. Also, time
complexity of tagline detection algorithms will be explored in
our future work. In our current studies, one or two human sub-
jects are scanned in a week due to the limitations on subject
selection, training, and scanner scheduling. However, algorithm
efficiency shall be evaluated and better methods that balance
efficiency and precision shall be identified to prepare for higher
throughput image acquisition. Although, it has little impact on
the accuracy of tagline detection, development of an automatic
region-of-interest segmentation method will boost the usability
of tagline detection and the tagged MR imaging.
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